netty源码分析(八)Netty的自适应缓冲区分配策略与堆外内存创建方式

来源:互联网 发布:中国阶层固化 知乎 编辑:程序博客网 时间:2024/05/29 10:35

我们总结一下netty的模式:
这里写图片描述

bossGroup将得到的selectedKyes中的socketchannel接收到,然后封装成NioServerSocketChannel,NioServerSocketChannel注册到workerGroup里边,最后客户端直接和workerGroup 里边的NioServerSocketChannel通信交换信息,即bossGroup负责派发,workerGroup 负责真正数据的处理。

我们在处理实际的业务数据的时候,一般是在handler里边的方法去实现业务逻辑:
channelRead0这个方法肯定是被netty框架回调=被执行,但是我们的业务逻辑如果复杂,整个channelRead0需要执行很长时间,虽然netty性能很高,但是过长时间的业务处理使得整体速度变慢,对于这种情况,我们需要建立一个业务的线程组放在channelRead0里边,做成异步的处理,处理完毕用 channel写回到客户端处理结果。

public class MyServerHandler extends SimpleChannelInboundHandler<String> {    @Override    protected void channelRead0(ChannelHandlerContext ctx, String msg) throws Exception {        System.out.println(ctx.channel().remoteAddress()+" --> "+msg);        ctx.channel().writeAndFlush("from server : "+ UUID.randomUUID());    }    @Override    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {        cause.printStackTrace();        ctx.close();    }}

然后下一个知识点是关于缓冲区的申请是怎么回事、
回到NioServerSocketChannel:

 /**     * Create a new instance     * 默认构造器     */    public NioServerSocketChannel() {        this(newSocket(DEFAULT_SELECTOR_PROVIDER));    }    /**     * Create a new instance using the given {@link ServerSocketChannel}.     * 默认构造器调用带ServerSocketChannel参数的构造器     */    public NioServerSocketChannel(ServerSocketChannel channel) {        super(null, channel, SelectionKey.OP_ACCEPT);//这一部分之前我们讲解过,不做介绍。        config = new NioServerSocketChannelConfig(this, javaChannel().socket());        //javaChannel()  是ServerSocketChannel,javaChannel().socket()就是一个ServerSocketChannel得到的ServerSocket。    }    @Override    //获取无参构造器设置的ServerSocketChannel    protected ServerSocketChannel javaChannel() {        return (ServerSocketChannel) super.javaChannel();    }    //紧接着进入NioServerSocketChannelConfig的构造器,NioServerSocketChannelConfig是NioServerSocketChannel的内部类。    private final class NioServerSocketChannelConfig extends DefaultServerSocketChannelConfig {        private NioServerSocketChannelConfig(NioServerSocketChannel channel, ServerSocket javaSocket) {            super(channel, javaSocket);//调用DefaultServerSocketChannelConfig的构造器        }        @Override        protected void autoReadCleared() {            clearReadPending();        }    }

进入DefaultServerSocketChannelConfig的构造器:

public class DefaultServerSocketChannelConfig extends DefaultChannelConfig                                              implements ServerSocketChannelConfig{    ....略    public DefaultServerSocketChannelConfig(ServerSocketChannel channel, ServerSocket javaSocket) {        super(channel);//进入DefaultChannelConfig的构造器        if (javaSocket == null) {            throw new NullPointerException("javaSocket");        }        this.javaSocket = javaSocket;    }     ....略}

DefaultChannelConfig构造器:

    public DefaultChannelConfig(Channel channel) {        this(channel, new AdaptiveRecvByteBufAllocator());//Channel是NioServerSocketChannel     }

这里见到一个新的类AdaptiveRecvByteBufAllocator,适配的字节缓冲器,进去看看:

/** * The {@link RecvByteBufAllocator} that automatically increases and * decreases the predicted buffer size on feed back. * <p>RecvByteBufAllocator是一个对buffer的大小根据反馈自动自动增长或者减少的这么一个类。 * It gradually increases the expected number of readable bytes if the previous * read fully filled the allocated buffer.  It gradually decreases the expected * number of readable bytes if the read operation was not able to fill a certain * amount of the allocated buffer two times consecutively.  Otherwise, it keeps * returning the same prediction. * 如果前一次的缓冲区的申请大小满了,那么本次会自动增加容量,同样的道理如果上2次没有填满,那么本次的容量会减少。 * */public class AdaptiveRecvByteBufAllocator extends DefaultMaxMessagesRecvByteBufAllocator {    static final int DEFAULT_MINIMUM = 64;    static final int DEFAULT_INITIAL = 1024;    static final int DEFAULT_MAXIMUM = 65536;    private static final int INDEX_INCREMENT = 4;    private static final int INDEX_DECREMENT = 1;    private static final int[] SIZE_TABLE;    //静态代码块的作用是对SIZE_TABLE数组填写1~38的坐标的值是16,32,48....一直到65536    //自动减少或者增加的幅度就是来自于这个数组。具体逻辑在HandleImpl对的record方法。    static {        List<Integer> sizeTable = new ArrayList<Integer>();        for (int i = 16; i < 512; i += 16) {            sizeTable.add(i);//1~16的设置是16到(512-16)        }        for (int i = 512; i > 0; i <<= 1) {            sizeTable.add(i);//从512到65536        }        SIZE_TABLE = new int[sizeTable.size()];        for (int i = 0; i < SIZE_TABLE.length; i ++) {            SIZE_TABLE[i] = sizeTable.get(i);//填写到SIZE_TABLE数组        }    }    /**     * Creates a new predictor with the default parameters.  With the default     * parameters, the expected buffer size starts from {@code 1024}, does not     * go down below {@code 64}, and does not go up above {@code 65536}.     */    public AdaptiveRecvByteBufAllocator() {        this(DEFAULT_MINIMUM, DEFAULT_INITIAL, DEFAULT_MAXIMUM);//默认是是DEFAULT_MINIMUM(也是最小值,即64)        //初始大小DEFAULT_INITIAL(即1024),最大值是DEFAULT_MAXIMUM(即65536)    }.....略。。。    private final class HandleImpl extends MaxMessageHandle {        private final int minIndex;        private final int maxIndex;        private int index;        private int nextReceiveBufferSize;        private boolean decreaseNow;        public HandleImpl(int minIndex, int maxIndex, int initial) {            this.minIndex = minIndex;            this.maxIndex = maxIndex;            index = getSizeTableIndex(initial);            nextReceiveBufferSize = SIZE_TABLE[index];        }        @Override        //得到预测值        public int guess() {            return nextReceiveBufferSize;        }       //计算预测值        private void record(int actualReadBytes) {            if (actualReadBytes <= SIZE_TABLE[Math.max(0, index - INDEX_DECREMENT - 1)]) {                if (decreaseNow) {                    index = Math.max(index - INDEX_DECREMENT, minIndex);                    nextReceiveBufferSize = SIZE_TABLE[index];                    decreaseNow = false;                } else {                    decreaseNow = true;                }            } else if (actualReadBytes >= nextReceiveBufferSize) {                index = Math.min(index + INDEX_INCREMENT, maxIndex);                nextReceiveBufferSize = SIZE_TABLE[index];                decreaseNow = false;            }        }        @Override        public void readComplete() {            record(totalBytesRead());        }    }  ....略...

我们进入HandleImpl 的父类MaxMessageHandle 之中,里边有一个申请缓冲区的重要方法:

        @Override        public ByteBuf allocate(ByteBufAllocator alloc) {            return alloc.ioBuffer(guess());//guess()方法得到预测值,用来设置当前缓冲区的大小        }

alloc.ioBuffer()有很多实现方法,我们拿AbstractByteBufAllocator举例。
进入AbstractByteBufAllocator:

     /**     PlatformDependent.hasUnsafe()会根据是否存在io.netty.noUnsafe配置返回boolean,如果是android系统返回false。     */    public ByteBuf ioBuffer(int initialCapacity) {        if (PlatformDependent.hasUnsafe()) {            return directBuffer(initialCapacity);        }        return heapBuffer(initialCapacity);    }

看一下directBuffer()方法:

    public ByteBuf directBuffer(int initialCapacity) {        return directBuffer(initialCapacity, DEFAULT_MAX_CAPACITY);    }

继续钻:

    @Override    public ByteBuf directBuffer(int initialCapacity, int maxCapacity) {        if (initialCapacity == 0 && maxCapacity == 0) {            return emptyBuf;        }        validate(initialCapacity, maxCapacity);        return newDirectBuffer(initialCapacity, maxCapacity);    }

由于中间调用链比较长,不在列举,最后我们会找到我们熟悉的nio的API:

    protected ByteBuffer allocateDirect(int initialCapacity) {        return ByteBuffer.allocateDirect(initialCapacity);    }

即netty最终是用nio的ByteBuffer申请的直接内存。
同样的道理,堆内内存的申请也是如此:
heapBuffer(initialCapacity)方法最终的调用是这样:

    byte[] allocateArray(int initialCapacity) {        return new byte[initialCapacity];    }

由于是堆内内存直接是返回一个数组。

阅读全文
0 0
原创粉丝点击