JAVA自定义算法产生正态分布随机数

来源:互联网 发布:win7未识别的网络 编辑:程序博客网 时间:2024/06/05 05:27

原文章地址:http://www.cnblogs.com/zztt/p/4025207.html

一、为什么需要服从正态分布的随机函数

一般我们经常使用的随机数函数 Math.random() 产生的是服从均匀分布的随机数,能够模拟等概率出现的情况,例如 扔一个骰子,1到6点的概率应该相等,但现实生活中更多的随机现象是符合正态分布的,例如20岁成年人的体重分布等。

 

假如我们在制作一个游戏,要随机设定许许多多 NPC 的身高,如果还用Math.random(),生成从140 到 220 之间的数字,就会发现每个身高段的人数是一样多的,这是比较无趣的,这样的世界也与我们习惯不同,现实应该是特别高和特别矮的都很少,处于中间的人数最多,这就要求随机函数符合正态分布。

 

二、正态分布复习

 

图片来自:http://zh.wikipedia.org/zh-cn/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83

具体性质也请查阅上面链接,描述正态分布的主要特征是均值和方差,如上图,最左的倒钟形图的均值为-2, 其余为0 ;

 

方差越大,钟形越扁平,方差越小越陡;

  • 密度函数图像关于均值对称。
  • 在x=μ±σ处,曲线有拐点。
  • 函数曲线下68.26%的面积在平均数左右的一个标准差σ的区间内。
  • 95.44%的面积在平均数左右两个标准差2σ的区间内。
  • 99.74%的面积在平均数左右三个标准差3σ的区间内。

当均值为0, 方差为 1 时称为标准正态分布;

 

 

三、由均匀分布经 “Box-Muller法” 转换为正态分布

 

通过查阅文献可知(请参见:http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform),有一个称为 Box-Muller (1958) 转换的算法能够将两个在区间(0,1] 的均匀分布转化为标准正态分布,其公式为:

y1 = sqrt( - 2 ln(u) ) cos( 2 pi v )

y2 = sqrt( - 2 ln(u) ) sin( 2 pi v )

 

 

因为三角函数计算较慢,我们可以通过上述公式的一个 polar form(极坐标形式)能够简化计算,

算法描述如下:

复制代码
function getNumberInNormalDistribution(mean,std_dev){    return mean+(randomNormalDistribution()*std_dev);}function randomNormalDistribution(){    var u=0.0, v=0.0, w=0.0, c=0.0;    do{        //获得两个(-1,1)的独立随机变量        u=Math.random()*2-1.0;        v=Math.random()*2-1.0;        w=u*u+v*v;    }while(w==0.0||w>=1.0)    //这里就是 Box-Muller转换    c=Math.sqrt((-2*Math.log(w))/w);    //返回2个标准正态分布的随机数,封装进一个数组返回    //当然,因为这个函数运行较快,也可以扔掉一个    //return [u*c,v*c];    return u*c;}
复制代码

 

因此,假如我们要获得均值为180,要68.26%左右的NPC身高都在[170,190]之内,即1个标准差范围内,因此标准差为10, 可以通过getNumberInNormalDistribution(180,10) 调用,我们实验1000000词,得到结果如下:

 

复制代码
// 身高:频率128:1132:1133:1134:1135:1136:2137:4138:8139:11140:14141:19142:28143:41144:54145:80146:133147:153148:235149:333150:429151:598152:764153:1059154:1314155:1776156:2290157:2835158:3503159:4373160:5513161:6475162:7809163:9437164:11189165:13282166:15020167:17239168:19215169:21597170:24336171:26684172:29000173:31413174:33179175:35027176:37084177:38047178:38968179:39635180:39700181:39548182:38960183:38674184:36948185:35220186:33224187:31038188:29198189:26668190:23893191:21662192:19476193:16898194:15056195:13046196:10971197:9456198:7928199:6697200:5370201:4334202:3548203:2810204:2330205:1765206:1350207:1093208:797209:595210:371211:328212:255213:165214:121215:91216:71217:29218:32219:28220:20221:6222:7223:7224:3225:2228:1
复制代码

 

绘制成柱状图如下:

 

可见,这是有着非常明显的正态分布图像特征。

 

 

四、由均匀分布叠加获得正态分布

 

我们需要祭出万能的中心极限定理。

 

根据独立同分布的中心极限定理:设随机变量X1,X2,…Xn,…相互独立,服从同一分布,且数学期望为μ,标准差为σ (σ>0),则随机变量之和的标准化变量:

Y=((X1+X2+…+Xn)-nμ)/(sqrt(n)*sqrt(σ)) 近似服从标准正态分布 N(0,1)

 

如果我们将足够多个均匀分布随机变量相加,相加之和将服从正态分布。但是,我们需要累加多少个均匀分布才能较好低近似正态分布呢?

由于 X~U(0, 1) , 可得 μ=1/2, σ=sqrt(1/12),代入上面的式子即可近似模拟随机变量之和的概率密度函数(p.d.f).

 

下图是由2个服从 U(0,1) 分布的随机变量相加得到的 p.d.f 图像:

 

如果我们增加累加的均匀分布的数量会怎样呢?

 

上图是 n=3 时的图像,可以看到正态分布的形状出来了,但顶端还略为平缓。

 

特别低,当n=12时 (随机变量(X1+X2+…+Xn)的均值为6,方差为1)  这时有一个很好的特点,公式 Y=((X1+X2+…+Xn)-nμ)/(sqrt(n)*sqrt(σ)) 的分母正好为1,因此简化成了 Y=((X1+X2+…+Xn)-nμ),非常便于编程计算,并且已经非常接近于标准正态分布,请见下图:

 

也就是说均值为μ,标准差为σ 的独立同分布变量 X1,X2, …, Xn 的算数平均数  T=(X1+X2+ …+ Xn)/n,当n充分大时,近似地服从均值为μ,方差为σ*σ/n 的正态分布。

 

最后,代码如下:

复制代码
function getNumberInNormalDistribution(mean,std_dev){        return mean+(uniform2NormalDistribution()*std_dev);}function uniform2NormalDistribution(){    var sum=0.0;    for(var i=0; i<12; i++){        sum=sum+Math.random();    }    return sum-6.0;}
复制代码

 

同样,将产生100万个随机数按频率画出直方图如下:

原创粉丝点击