Android在NDK层使用OpenSSL进行RSA加密

来源:互联网 发布:新人网络投稿从哪里 编辑:程序博客网 时间:2024/05/17 02:53

前言

需求:需要在NDK层对一个Java层的字符串进行RSA加密,然后对加密的结果进行Base64返回到Java层
方案:选择使用OpenSSL来实现。

编译libssl.a和libcrypto.a静态库

在github上找到了一个项目,可以直接将OpenSSL编译成Android可以使用的,项目地址为

  • openssl_for_ios_and_android ( https://github.com/leenjewel/openssl_for_ios_and_android )

但是这个项目有点小问题,部分编译脚本需要做点改动,改动后的项目见

  • openssl_for_ios_and_android ( https://github.com/lizhangqu/openssl_for_ios_and_android )

主要做了3个改动:

  1. 将最低版本支持从Android 21改到了Android 14
  2. 修复一个armeabi-v7a无法编译出来的问题
  3. 升级了openssl的版本到openssl-1.1.0e

之后将项目clone下来,进入到tools目录,执行build-openssl4android.sh编译脚本

./build-openssl4android.sh android-armeabi armeabi-v7a./build-openssl4android.sh android armeabi

这里只编译了armeabi-va7和armeabi架构CPU的so,如果有需要,请自行更改命令参数编译X86等架构的so。

经过很长时间的编译。。。大概要10来分钟吧。。。在根目录下的output会产生一个android目录,里面有openssl-armeabi和openssl-armeabi-v7a两个文件夹,包含了openssl的头文件以及编译好的.a静态库

实现JNI函数

编译好后.a静态库,就可以创建jni项目了

进入jni项目根目录,创建Application.mk文件

APP_ABI := armeabi armeabi-v7aAPP_PLATFORM := android-14APP_OPTIM := releaseAPP_STL := c++_staticAPP_THIN_ARCHIVE := trueAPP_CPPFLAGS := -fpic -fexceptions -frttiAPP_GNUSTL_FORCE_CPP_FEATURES := pic exceptions rtti

进入jni项目根目录,创建Android.mk文件

LOCAL_PATH := $(call my-dir)#引用libcrypto.ainclude $(CLEAR_VARS)LOCAL_MODULE := libcryptoLOCAL_SRC_FILES := $(LOCAL_PATH)/openssl/$(TARGET_ARCH_ABI)/lib/libcrypto.ainclude $(PREBUILT_STATIC_LIBRARY)#引用libssl.ainclude $(CLEAR_VARS)LOCAL_MODULE := libsslLOCAL_SRC_FILES := $(LOCAL_PATH)/openssl/$(TARGET_ARCH_ABI)/lib/libssl.ainclude $(PREBUILT_STATIC_LIBRARY)include $(CLEAR_VARS)LOCAL_MODULE            := testLOCAL_SRC_FILES         := \native.cpp \LOCAL_C_INCLUDES        :=$(LOCAL_PATH)/openssl/openssl-$(TARGET_ARCH_ABI)/includeTARGET_PLATFORM         := android-14#静态库依赖LOCAL_STATIC_LIBRARIES  := libssl libcryptoLOCAL_LDLIBS += -latomic -lz -lloginclude $(BUILD_SHARED_LIBRARY)

进入jni项目根目录,拷贝编译好的openssl文件

接着将第一步编译好的静态库文件进行拷贝,将output目录下android整个目录进行拷贝,拷贝到jni项目根目录下,拷贝完成后将android目录重命名为openssl

进入jni项目根目录,创建native.cpp,搭建基础的结构

#include "jni.h"template<typename T, int N>char (&ArraySizeHelper(T (&array)[N]))[N];#define NELEMS(x) (sizeof(ArraySizeHelper(x)))#ifndef CLASSNAME#define CLASSNAME "com/fucknmb/Test"#endifjstring native_rsa(JNIEnv *env, jobject thiz, jstring base64PublicKey, jstring content) {    return NULL;}static const JNINativeMethod sMethods[] = {    {        const_cast<char *>("native_rsa"),        const_cast<char *>("(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;"),        reinterpret_cast<void *>(native_rsa)    }};int registerNativeMethods(JNIEnv *env, const char *className, const JNINativeMethod *methods,                          const int numMethods) {    jclass clazz = env->FindClass(className);    if (!clazz) {        return JNI_FALSE;    }    if (env->RegisterNatives(clazz, methods, numMethods) != 0) {        env->DeleteLocalRef(clazz);        return JNI_FALSE;    }    env->DeleteLocalRef(clazz);    return JNI_TRUE;}jint JNI_OnLoad(JavaVM *vm, void *reserved) {    JNIEnv *env;    if (vm->GetEnv(reinterpret_cast<void **>(&env), JNI_VERSION_1_6) != JNI_OK) {        return -1;    }    registerNativeMethods(env, CLASSNAME, sMethods, NELEMS(sMethods));    return JNI_VERSION_1_6;}

声明java层函数

在Java层创建com/fucknmb/Test类,声明一个native函数

package com.fucknmb;import java.util.List;public class Test {    public static native final String native_rsa(String base64PublicKey, String content);    static {        System.loadLibrary("test");    }}

实现native_rsa函数

native_rsa函数有两个参数,一个是base64之后的公钥(不含头部和尾部,以及没换行),第二个是待加密的明文内容,该函数的返回值是加密后的密文进行base64。

对于第一个参数,我们需要将其转为公钥文件字符串,追加头部和尾部,其实现如下:

/** * 根据公钥base64字符串(没换行)生成公钥文本内容 * @param base64EncodedKey * @return */std::string generatePublicKey(std::string base64EncodedKey) {    std::string publicKey = base64EncodedKey;    size_t base64Length = 64;//每64个字符一行    size_t publicKeyLength = base64EncodedKey.size();    for (size_t i = base64Length; i < publicKeyLength; i += base64Length) {        //每base64Length个字符,增加一个换行        if (base64EncodedKey[i] != '\n') {            publicKey.insert(i, "\n");        }        i++;    }    //最前面追加公钥begin字符串    publicKey.insert(0, "-----BEGIN PUBLIC KEY-----\n");    //最前面追加公钥end字符串    publicKey.append("\n-----END PUBLIC KEY-----");    return publicKey;}

openssl rsa加密后,我们需要对密文进行Base64,openssl同样提供了Base64算法,实现如下

/** * base64 encode * @param decoded_bytes * @return */std::string base64_encode(const std::string &decoded_bytes) {    BIO *bio, *b64;    BUF_MEM *bufferPtr;    b64 = BIO_new(BIO_f_base64());    //不换行    BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);    bio = BIO_new(BIO_s_mem());    bio = BIO_push(b64, bio);    //encode    BIO_write(bio, decoded_bytes.c_str(), (int) decoded_bytes.length());    BIO_flush(bio);    BIO_get_mem_ptr(bio, &bufferPtr);    //这里的第二个参数很重要,必须赋值    std::string result(bufferPtr->data, bufferPtr->length);    BIO_free_all(bio);    return result;}

这个函数有一点需要注意的就是这一行

std::string result(bufferPtr->data, bufferPtr->length);

第二个参数表示长度,不能少,否则base64后的字符串长度会出现异常,导致decode的时候末尾会出现一大堆的乱码,而网上大多数的代码,是缺失这一个参数的。

接下来就是rsa的实现了

/** * 使用公钥对明文加密 * @param publicKey * @param from * @return */std::string encryptRSA(const std::string &publicKey, const std::string &from) {    BIO *bio = NULL;    RSA *rsa_public_key = NULL;    //从字符串读取RSA公钥串    if ((bio = BIO_new_mem_buf((void *) publicKey.c_str(), -1)) == NULL) {        std::cout << "BIO_new_mem_buf failed!" << std::endl;        return NULL;    }    //读取公钥    rsa_public_key = PEM_read_bio_RSA_PUBKEY(bio, NULL, NULL, NULL);    //异常处理    if (rsa_public_key == NULL) {        //资源释放        BIO_free_all(bio);        RSA_free(rsa_public_key);        //清除管理CRYPTO_EX_DATA的全局hash表中的数据,避免内存泄漏        CRYPTO_cleanup_all_ex_data();        return NULL;    }    //rsa模的位数    int rsa_size = RSA_size(rsa_public_key);    //RSA_PKCS1_PADDING 最大加密长度 为 128 -11    //RSA_NO_PADDING 最大加密长度为  128    rsa_size = rsa_size - RSA_PKCS1_PADDING_SIZE;    //动态分配内存,用于存储加密后的密文    unsigned char *to = (unsigned char *) malloc(rsa_size + 1);    //填充0    memset(to, 0, rsa_size + 1);    //明文长度    int flen = from.length();    //加密,返回值为加密后的密文长度,-1表示失败    int status = RSA_public_encrypt(flen, (const unsigned char *) from.c_str(), to, rsa_public_key,                                    RSA_PKCS1_PADDING);    //异常处理    if (status < 0) {        //资源释放        free(to);        BIO_free_all(bio);        RSA_free(rsa_public_key);        //清除管理CRYPTO_EX_DATA的全局hash表中的数据,避免内存泄漏        CRYPTO_cleanup_all_ex_data();        return NULL;    }    //赋值密文    static std::string result((char *) to, status);    //资源释放    free(to);    BIO_free_all(bio);    RSA_free(rsa_public_key);    //清除管理CRYPTO_EX_DATA的全局hash表中的数据,避免内存泄漏    CRYPTO_cleanup_all_ex_data();    return result;}

同样这个函数也有几个地方需要注意:

第一点:

static std::string result((char *) to, status);

第二个参数表示密文长度,一般来说,这个值会是128,如果第二个值不传,会导致加密后的密文经过string的构造函数后,丢失一部分数据,导致数据的不正确

第二点:

rsa_size = rsa_size - RSA_PKCS1_PADDING_SIZE;

对于RSA_PKCS1_PADDING_SIZE,最大加密长度为需要减去11

第三点:

//明文长度int flen = from.length();//加密,返回值为加密后的密文长度,-1表示失败int status = RSA_public_encrypt(flen, (const unsigned char *) from.c_str(), to, rsa_public_key,                                RSA_PKCS1_PADDING);

RSA_public_encrypt函数的第一个参数传的是明文长度,而不是最大加密长度rsa_size,网上的所有代码这个参数都是传错的,传了rsa_size,而实际上这个参数的参数名是flen,表示from字符串的length。如果这个参数传了最大加密长度,将直接导致java层无法正确解密JNI层加密后的数据。

最后不要忘记加头文件的引用

#include <openssl/bio.h>#include <openssl/buffer.h>#include <openssl/evp.h>#include <openssl/rsa.h>#include <openssl/pem.h>#include <iostream>using std::string;

需要的函数都有了,实现以下native_rsa函数,简单组装一下以上函数即可

jstring native_rsa(JNIEnv *env, jobject thiz, jstring base64PublicKey, jstring content) {    //jstring 转 char*    char *base64PublicKeyChars = (char *) env->GetStringUTFChars(base64PublicKey, NULL);    //char* 转 string    string base64PublicKeyString = string(base64PublicKeyChars);    //生成公钥字符串    string generatedPublicKey = generatePublicKey(base64PublicKeyString);    //释放    env->ReleaseStringUTFChars(base64PublicKey, base64PublicKeyChars);    //jstring 转 char*    char *contentChars = (char *) env->GetStringUTFChars(content, NULL);    //char* 转 string    string contentString = string(contentChars);    //释放    env->ReleaseStringUTFChars(content, contentChars);    //调用RSA加密函数加密    string rsaResult = encryptRSA(generatedPublicKey, contentString);    if (rsaResult.empty()) {        return NULL;    }    //将密文进行base64    string base64RSA = base64_encode(rsaResult);    if (base64RSA.empty()) {        return NULL;    }    //string -> char* -> jstring 返回    jstring result = env->NewStringUTF(base64RSA.c_str());    return result;}

私钥解密

如果你还需要用的私钥解密部分,可以继续实现base64的decode函数,以及rsa的私钥串生成函数,rsa的解密函数

base64 decode函数的实现如下:

/** * base64 decode * @param encoded_bytes * @return */std::string base64_decode(const std::string &encoded_bytes) {    BIO *bioMem, *b64;    bioMem = BIO_new_mem_buf((void *) encoded_bytes.c_str(), -1);    b64 = BIO_new(BIO_f_base64());    BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);    bioMem = BIO_push(b64, bioMem);    //获得解码长度    size_t buffer_length = BIO_get_mem_data(bioMem, NULL);    char *decode = (char *) malloc(buffer_length + 1);    //填充0    memset(decode, 0, buffer_length + 1);    BIO_read(bioMem, (void *) decode, (int) buffer_length);    static std::string decoded_bytes(decode);    BIO_free_all(bioMem);    return decoded_bytes;}

rsa的私钥串生成函数的试下如下:

/** * 根据私钥base64字符串(没换行)生成私钥文本内容 * @param base64EncodedKey * @return */std::string generatePrivateKey(std::string base64EncodedKey) {    std::string privateKey = base64EncodedKey;    size_t base64Length = 64;//每64个字符一行    size_t privateKeyLength = base64EncodedKey.size();    for (size_t i = base64Length; i < privateKeyLength; i += base64Length) {        //每base64Length个字符,增加一个换行        if (base64EncodedKey[i] != '\n') {            privateKey.insert(i, "\n");        }        i++;    }    //最前面追加私钥begin字符串    privateKey.insert(0, "-----BEGIN PRIVATE KEY-----\n");    //最后面追加私钥end字符串    privateKey.append("\n-----END PRIVATE KEY-----");    return privateKey;}

私钥解密函数的实现如下:

/** * 使用私钥对密文解密 * @param privetaKey * @param from * @return */std::string decryptRSA(const std::string &privetaKey, const std::string &from) {    BIO *bio = NULL;    RSA *rsa_private_key = NULL;    //从字符串读取RSA公钥串    if ((bio = BIO_new_mem_buf((void *) privetaKey.c_str(), -1)) == NULL) {        std::cout << "BIO_new_mem_buf failed!" << std::endl;        return NULL;    }    //读取私钥    rsa_private_key = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL);    //异常处理    if (rsa_private_key == NULL) {        //资源释放        BIO_free_all(bio);        RSA_free(rsa_private_key);        //清除管理CRYPTO_EX_DATA的全局hash表中的数据,避免内存泄漏        CRYPTO_cleanup_all_ex_data();        return NULL;    }    //rsa模的位数    int rsa_size = RSA_size(rsa_private_key);    //动态分配内存,用于存储解密后的明文    unsigned char *to = (unsigned char *) malloc(rsa_size + 1);    //填充0    memset(to, 0, rsa_size + 1);    //密文长度    int flen = from.length();    // RSA_NO_PADDING    // RSA_PKCS1_PADDING    //解密,返回值为解密后的名文长度,-1表示失败    int status = RSA_private_decrypt(flen, (const unsigned char *) from.c_str(), to, rsa_private_key,                                     RSA_PKCS1_PADDING);    //异常处理率    if (status < 0) {        //释放资源        free(to);        BIO_free_all(bio);        RSA_free(rsa_private_key);        //清除管理CRYPTO_EX_DATA的全局hash表中的数据,避免内存泄漏        CRYPTO_cleanup_all_ex_data();        return NULL;    }    //赋值明文,是否需要指定to的长度?    static std::string result((char *) to);    //释放资源    free(to);    BIO_free_all(bio);    RSA_free(rsa_private_key);    //清除管理CRYPTO_EX_DATA的全局hash表中的数据,避免内存泄漏    CRYPTO_cleanup_all_ex_data();    return result;}

如果你要解密公钥加密后的密文,只需要这样调用即可返回明文

//公钥串和私钥串string generatedPublicKey = generatePublicKey(base64PublicKey);string generatedPrivetKey = generatePrivateKey(base64PrivateKey);string content("just a test");//加密string result = encryptRSA(generatedPublicKey, content);//encodestring base64RSA = base64_encode(result);//decodestring decodeBase64RSA = base64_decode(base64RSA);//解密string origin = decryptRSA(generatedPrivetKey, decodeBase64RSA);

最后注意一下base64PublicKey和base64PrivateKey,这两个字符串是不包含换行的,就是私钥和公钥的encoded之后的字节数组base64后的值,因此需要自己调用generatePublicKey和generatePrivateKey追加头和尾。

RSA公钥和私钥的生成

生成私钥

openssl genrsa -out rsa_private_key.pem 1024

这条命令让openssl随机生成了一份私钥,加密长度是1024位。加密长度是指理论上最大允许”被加密的信息“长度的限制,也就是明文的长度限制。随着这个参数的增大(比方说2048),允许的明文长度也会增加,但同时也会造成计算复杂度的极速增长。一般推荐的长度就是1024位(128字节,之前的代码的最大加密长度128就是这么来的)。

生成公钥

openssl rsa -in rsa_private_key.pem -out rsa_public_key.pem -pubout

密钥文件最终将数据通过Base64编码进行存储。可以看到上述生成的密钥文件内容每一行的长度都很规律。这是由于RFC2045中规定:The encoded output stream must be represented in lines of no more than 76 characters each。也就是说Base64编码的数据每行最多不超过76字符,对于超长数据需要按行分割。

上面的generatePublicKey和generatePrivateKey函数我们是按64位一行进行分割的,如果你有需要,可以将值修改为76。

第一步生成私钥文件不能直接使用,需要进行PKCS#8编码:

openssl pkcs8 -topk8 -in rsa_private_key.pem -out pkcs8_rsa_private_key.pem -nocrypt

第二步和第三步生成的公钥和私钥就可以用了,这里有个问题需要注意,如果你的公钥和私钥是类似下面这种格式的

-----BEGIN PUBLIC KEY-----....-----END PUBLIC KEY----------BEGIN PRIVATE KEY-----....-----END PRIVATE KEY-----

那么,你无需调用generatePublicKey或者generatePrivateKey函数,此时已经是需要的公钥串和私钥串,但是如果你的公钥和私钥没有头部和尾部,并且不是换行的,就需要调用一下进行转换,因为我这边Java层传入的是后者,所以需要调用generatePublicKey或者generatePrivateKey进行转换。

Java层调用公钥加密函数部分

String base64PublicKey = "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDP0tzYxBF5IGfNvuIHzAqvza/ZxfH8aEiPFA4nY/W3js+cG3JUU86Jkc7jUG9XfGdW6SJ38ANs5tyWqYkJyoUErB2PjQQQDmHhbgpBUSeOdwGr/LPtrTrotrNXwpRY9eodkcbcMlbT0gvdnohRSISCjJ2KmFcBMkeO9R2DWe6oIwIDAQAB";String result = com.fucknmb.Test.native_rsa(base64PublicKey,"I am test");


原创粉丝点击