《编写高质量代码 改善Python程序的91个建议》读后程序学习小结

来源:互联网 发布:兼职网络维护 编辑:程序博客网 时间:2024/05/21 09:05
# coding=utf-8# Language Reference'''参考书:《编写高质量代码 改善Python程序的91个建议》张颖,赖勇浩 著 2014.6'''from __future__ import with_statement# assertx, y = 1, 1assert x == y, "not equals"# time计时的两种方式import timeitt = timeit.Timer('x,y=y,x','x=1;y=2')print(t.timeit()) # 0.110494892863import timet = time.time()sum = 0while True:    sum += 1    if sum > 100000:        breaktime.sleep(1)print(time.time()-t) # 1.02999997139# itertools 结合 yieldfrom itertools import islicedef fib():    a, b = 0, 1    while True:        yield a        a, b = b, a+bprint(list(islice(fib(),10))) # [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]# class 定义变量 和 nametuple 定义变量class Seasons:    Sprint, Summer, Autumn, Winter = range(4)print(Seasons.Winter) # 3from collections import namedtupleSeasons0 = namedtuple('Seasons0','Spring Summer Autumn Winter')._make(range(4))print(Seasons0.Winter) # 3# isintance 可以设置多种类型的判断print(isinstance((2,3),(str, list, tuple))) # True# eval的漏洞,能够处理的范围太大,导致系统文件被读取,谨慎使用str0 = '__import__("os").system("dir")'eval(str0) # 2017/09/28  09:31    <DIR> 。。。# 生成器 yield 与 迭代器 iteritemsdef myenumerate(seq):    n = -1    for elem in reversed(seq):        yield len(seq) + n, elem        n = n -1e = myenumerate([1,2,3,4,5])print(e.next()) # (4, 5)dict0 = {'1':1, '2':2}d = dict0.iteritems()print(d.next()) # ('1', 1)# 字符串驻留机制:对于较小的字符串,为了提高系统性能保留其值的一个副本,当创建新的字符串时直接指向该副本。a = 'hello'b = 'hello' # b  a 的引用print(id(a), id(b), a is b, a == b) # (53383488, 53383488, True, True)# 可变对象list 与 不可变对象strlist1 = [1,2,3]list2 = list1list3 = list1[:] # 浅拷贝list1.append(4)print(list1, list2, list3) # ([1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3]) - list2可变str1 = '123'str2 = str1str3 = str1[:]str1 += '4'print(str1, str2, str3) # ('1234', '123', '123') - str2不可变# 浅拷贝, 深拷贝# 浅拷贝和深拷贝的不同仅仅是对组合对象来说,# 所谓的组合对象就是包含了其它对象的对象,如列表,类实例。# 而对于数字、字符串以及其它原子类型,没有拷贝一说,产生的都是原对象的引用。# 浅拷贝: 创建一个新的对象,其内容是原对象中元素的引用。(拷贝组合对象,不拷贝子对象)# 浅拷贝有:切片操作、工厂函数、对象的copy()方法、copy模块中的copy函数。# 深拷贝: 创建一个新的对象,然后递归的拷贝原对象所包含的子对象。深拷贝出来的对象与原对象没有任何关联。# 深拷贝: 虽然实际上会共享不可变的子对象,但不影响它们的相互独立性。# 深拷贝只有一种方式:copy模块中的deepcopy函数。a = [[1,2]] # 组合对象import copyb = copy.copy(a)print(id(a), id(b), a is b, a == b) # (58740048, 59050864, False, True)for i, j in zip(a, b):    print(id(i), id(j)) # (61090752, 61090752)子对象相同b = copy.deepcopy(a)print(id(a), id(b), a is b, a == b) # (58740048, 58737848, False, True)for i, j in zip(a, b):    print(id(i), id(j)) # (61090752, 61071568)子对象不同# 再举一例class TestCopy():    def get_list(self, list0):        self.list0 = list0    def change_list(self, str):        self.list0 += str    def print_list(self):        print(self.list0)list0 = [1, 2, 3]a = TestCopy()a.get_list(list0)a.print_list()  # [1, 2, 3]b = copy.copy(a) # 浅拷贝,子对象共享b.change_list('4')b.print_list()  # [1, 2, 3, '4']a.print_list()  # [1, 2, 3, '4']c = copy.deepcopy(a) # 深拷贝,子对象独立c.change_list('5')c.print_list()  # [1, 2, 3, '4', '5']b.print_list()  # [1, 2, 3, '4']a.print_list()  # [1, 2, 3, '4']# 赋值操作a = [1, 2, 3]b = copy.copy(a) # 其实是赋值操作,不属于浅拷贝,赋值对象相互独立b.append(4)print(a, b)  # ([1, 2, 3], [1, 2, 3, 4])# encode, decode, gbk, utf-8with open("test.txt", 'w') as f:    f.write('python' + '中文测试')with open("test.txt", 'r') as f:        # print(f.read()) # python中文测试        print((f.read().decode('utf-8')).encode('gbk')) # python���IJ���# --1 = 1 = ++1 = (1)print(+++1, ---1) # (1, -1)print (1), (1,) # 1 (1,)print(''.split(), ''.split(' ')) # ([], [''])# with 调用 class, 初始化调用__enter__,退出调用__exit__class MyContextManager():    def __enter__(self):        print('entering...')    def __exit__(self, exc_type, exc_val, exc_tb):        print('leaving...')        if exc_type is None:            print('no exceptions')            return False        elif exc_type is ValueError:            print('value error')            return True        else:            print('other error')            return Truewith MyContextManager():    print('Testing...')    raise(ValueError)  # entering... Testing... leaving... value error# else 结合 for  tryfor i in range(5):    print(i),else:    print('for_else') # 0 1 2 3 4 for_elsetry:    print('try'),except:    passelse:    print('try_else') # try try_else# Nonea = Noneb = Noneprint(id(a), id(b), a is b, a==b) # (505354444, 505354444, True, True)a = 'a'b = u'b'print(isinstance(a,str), isinstance(b,unicode), isinstance(a, basestring), isinstance(b, basestring))# (True, True, True, True)#  class 操作,先调用 __init__()class A:    def __nonzero__(self):        print('A.__nonzero__()')        return True    def __len__(self):        print('A.__len__()')        return  False    def __init__(self):        print('A.__init__()')        self.name = 'I am A'    def __str__(self):        print('A.__str__()')        return 'A.__str__{self.name}'.format(self=self)if A():    print('not empty') # A.__init__() A.__nonzero__() not emptyelse:    print('empty')print(str(A())) # A.__init__() A.__str__() A.__str__I am A# 尽量采用''.join()(效率更高),而不是 str + strs1, s2 ,s3 = 'a', 'b', 'c'print(s1+s2+s3, ''.join([s1, s2, s3])) # ('abc', 'abc')# map  list 结合list0 = [('a','b'), ('c','d')]formatter = "choose {0[0]} and {0[1]}".formatfor item in map(formatter, list0):    print(item)  # choose a and b  choose c and d# map 结合 typeproduct_info = '1-2-3'a, b, c = map(int, product_info.split('-'))print(a, b, c)  # (1, 2, 3)# 格式化输出,尽量采用 format,采用 %s 输出元组时需要加逗号itemname = list0[0] + list0[1]print(itemname) # ('a', 'b', 'c', 'd')print('itemname is %s' % (itemname,))   # 必须有个逗号 itemname is ('a', 'b', 'c', 'd')print('itemname is {}'.format(itemname)) # itemname is ('a', 'b', 'c', 'd')# 格式化输出 %2.5f,小数点后5位优先级高print('data: %6.3f' % 123.456789123)  # data: 123.457print('data: %2.5f' % 123.456789123)  # data: 123.45679# class传参:__init__ 中传入可变对象 - 会在子类中继承该可变对象的值class ChangeA():    def __init__(self, list0 = []): # mutable 可变        self.list0 = list0    def addChange(self, content):        self.list0.append(content)a = ChangeA()a.addChange('add change')b = ChangeA()print(a.list0, b.list0) # (['add change'], ['add change'])# 函数传参:传对象或对象的引用。若可变对象 - 共享, 若不可变对象 - 生成新对象后赋值def inc(n, list0):    n = n + 1    list0.append('a')n = 3list0 = [1]inc(n, list0)print(n, list0) # (3, [1, 'a'])# 子类继承父类,传参举例class Father():    def print_fa(self):        print(self.total)    def set(self, total):        self.total = totalclass SonA(Father):    passclass SonB(Father):    passa = SonA()a.set([1])a.print_fa() # [1]b = SonB()b.set([2])b.print_fa() # [2]# 在需要生成列表的时候使用列表解析# 对于大数据处理不建议用列表解析,过多的内存消耗会导致MemoryErrorprint([(a,b) for a in [1,2,3] for b in [2,3,4] if a != b])# [(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 2), (3, 4)]# class 中的 装饰符 :类方法,静态方法,实例方法class CS():    def instance_method(self,x):        print(x)    @classmethod    def class_method(cls,x):        print('class',x)    @staticmethod    def static_method(x):        print('static',x)CS().instance_method(1) # 1CS().class_method(2) # ('class', 2)CS().static_method(3) # ('static', 3)# itemgetter 字典排序,输出为元组dict0 = {'a':1, 'c':3, 'b':2}from operator import itemgetterprint(sorted(dict0.viewitems(), key = itemgetter(1))) # [('a', 1), ('b', 2), ('c', 3)]# Counter 计数from collections import Counterprint(Counter('success')) # Counter({'s': 3, 'c': 2, 'e': 1, 'u': 1})# 配置文件:优点:不需修改代码,改变程序行为,继承[DEFAULT]属性with open('format.conf', 'w') as f:    f.write('[DEFAULT]' + '\n')    f.write('conn_str = %(dbn)s://%(user)s:%(pw)s@%(host)s:%(port)s/%(db)s' + '\n')    f.write('dbn = mysql' + '\n')    f.write('user = root' + '\n')    f.write('host = localhost' + '\n')    f.write('port = 3306' + '\n')    f.write('[db1]' + '\n')    f.write('user = aaa' + '\n')    f.write('pw = ppp' + '\n')    f.write('db = example1' + '\n')    f.write('[db2]' + '\n')    f.write('host = 192.168.0.110' + '\n')    f.write('pw = www' + '\n')    f.write('db = example2' + '\n')from ConfigParser import  ConfigParserconf = ConfigParser()conf.read('format.conf')print(conf.get('db1', 'conn_str')) # mysql://aaa:ppp@localhost:3306/example1print(conf.get('db2', 'conn_str')) # mysql://root:www@192.168.0.110:3306/example2# pandas - 大文件(1G)读取操作 - 需要安装 pandasf = open('large.csv', 'wb')f.seek(1073741824 - 1)f.write('\0')f.close()import osprint(os.stat('large.csv').st_size) # 1073741824import csvwith open('large.csv', 'rb') as csvfile:    mycsv = csv.reader(csvfile, delimiter = ';')    # for row in mycsv: # MemoryError        # print(row)# import pandas as pd# reader = pd.read_table('large.csv', chunksize = 10, iterator = True)# iter(reader).next()# 序列化:把内存中的数据结构在不丢失其身份和类型信息的情况下,转成对象的文本或二进制表示。# pickle, json, marshal, shelveimport cPickle  as picklemy_data = {'a':1, 'b':2, 'c':3}fp = open('picklefile.dat', 'wb')pickle.dump(my_data, fp) # class - __getstate__(self)fp.close()fp = open('picklefile.dat', 'rb')out = pickle.load(fp) # class - __setstate__(self, state)fp.close()print(out) # {'a': 1, 'c': 3, 'b': 2}pickle.loads("cos\nsystem\n(S'dir'\ntR.") # 列出当前目录下所有文件,不安全 - 解决:继承类并定制化内容# 编码器 json.JSONEncodertry:    import simplejson as jsonexcept ImportError:    import jsonimport datetimed = datetime.datetime.now()d1 = d.strftime('%Y-%m-%d %H:%M:%S')print(d1, json.dumps(d1, cls = json.JSONEncoder)) # 也可以继承修改指定编码器json.JSONEncoder# ('2017-09-28 11:00:46', '"2017-09-28 11:00:46"')# traceback:出错时查看 调用栈import sysprint(sys.getrecursionlimit()) # 最大递归深度:1000import tracebacktry:    a = [1]    print(a[1])except IndexError as ex:    print(ex) # list index out of range    # traceback.print_exc() # 会导致程序中断tb_type, tb_val, exc_tb = sys.exc_info()for filename, linenum, funcname, source in traceback.extract_tb(exc_tb):    print("%-33s:%s '%s' in %s()" % (filename, linenum, source, funcname))    # H:/python/suggest0928.py         :353 'print(a[1])' in <module>()# LOG的五个等级:DEBUG, INFO, WARNING(默认), ERROR, CRITICAL# Logger, Handler, Formatter, Filterimport logginglogging.basicConfig(    level = logging.DEBUG,    filename = 'log.txt',    filemode = 'w',    format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',)logger = logging.getLogger()logger.info('[INFO]:I am a tester')logger.debug('test logging module')logger.error('this is error')logger.critical('this is critical')# thread: 多线程底层支持,以低级原始的方式处理和控制线程,较复杂# threading: 基于thread,操作对象化,提供丰富特性import threadingimport timedef myfunc(a, delay):    print('calculate %s after %s' % (a, delay))    time.sleep(delay)    print('begin')    res = a*a    print('result:', res)    return rest1 = threading.Thread(target = myfunc, args = (2, 5))t2 = threading.Thread(target = myfunc, args = (6, 8))print(t1.isDaemon()) # False 守护线程,默认Falseprint(t2.isDaemon())# t2.setDaemon(True) # True 表示 线程全部执行完成后,主程序才会退出t1.start()t2.start()# lock, mutex, condition, event, with lock, put,get# 生产者消费者模型import Queueimport threadingimport randomwrite_lock = threading.Lock()class Producer(threading.Thread):    def __init__(self, q, con, name):        super(Producer, self).__init__()        self.q = q        self.name = name        self.con = con        print('Producer ', self.name, ' started')    def run(self):        while(1):            global write_lock            # self.con.acquire()            if self.q.full():                with write_lock:                    print('Queue is full, producer wait')                # self.con.wait()            else:                value = random.randint(0,10)                with write_lock:                    print(self.name, 'put value:', self.name+':'+str(value), 'into queue')                self.q.put(self.name+':'+str(value))                # self.con.notify()        # self.con.release()class Consumer(threading.Thread):    def __init__(self, q, con, name):        super(Consumer, self).__init__()        self.q = q        self.name = name        self.con = con        print('Consumer ', self.name, ' started')    def run(self):        while(1):            global write_lock            # self.con.acquire()            if self.q.empty():                with write_lock:                    print('Queue is empty, consumer wait')                # self.con.wait()            else:                value = self.q.get()                with write_lock:                    print(self.name, 'get value:', value, 'from queue')                # self.con.notify()        # self.con.release()q = Queue.Queue(10) # 先进先出,循环队列大小10con = threading.Condition()p1 = Producer(q, con, 'P1')p2 = Producer(q, con, 'P2')c1 = Consumer(q, con, 'C1')p1.setDaemon(False)p2.setDaemon(False)c1.setDaemon(False)# p1.setDaemon(True)# p2.setDaemon(True)# c1.setDaemon(True)# p1.start()# p2.start()# c1.start()'''设计模式,静态语言风格单例模式,保证系统中一个类只有一个实例而且该实例易于被外界访模板方法:在一个方法中定义一个算法的骨架,并将一些事先步骤延迟到子类中。    子类在不改变算法结构的情况下,重新定义算法中的某些步骤。    混入mixins模式:基类在运行中可以动态改变(动态性)。'''# 发布 publish 订阅 subscribe 松散耦合 - 中间代理人 Broker# blinker - python-message# 库函数:关注日志产生,不关注日志输出;# 应用:关注日志统一放置,不关注谁产生日志。from collections import defaultdictroute_table = defaultdict(list)def sub(topic, callback):    if callback in route_table[topic]:        return    route_table[topic].append(callback)def pub(topic, *a, **kw):    for func in route_table[topic]:        func(*a, **kw)def greeting(name):    print('hello, %s' % name)sub('greet', greeting) # 订阅的时候将待调用的greeting放入dictpub('greet', 'tester') # hello, tester 发布的时候调用greeting函数# 类的状态转移,例,当telnet\注册成功后,就不再需要登录\注册了。def workday():    print('work hard')def weekend():    print('play harder')class People(): passpeople = People()while True:    for i in range(1,8,1):        if i == 6:            people.day = weekend        if i == 1:            people.day = workday        people.day()    break# 工厂模式# __init__(): 在类对象创建好后,进行变量的初始化# __new__(): 创建实例,类的构造方法,需要返回object.__new__()class TestMode(object):    def __init__(self):        print('i am father')    def test(self):        print('test is father')class A(TestMode):    def __init__(self):        print('i am A')    def test(self):        print('test is A')class B(TestMode):    def __init__(self):        print('i am B')    def test(self):        print('test is B')class FactoryTest(object):    content = {'a':A, 'b':B}    def __new__(cls, name):        if name in FactoryTest.content.keys():            print('create old %s' % name)            return FactoryTest.content[name]()        else:            print('create new %s' % name)            return TestMode()FactoryTest('a').test() # create old a - i am A - test is AFactoryTest('A').test() # create new A - i am father - test is father# 局部作用域 > 嵌套作用域 > 全局作用域 > 内置作用域a = 1def foo(x):    global a    a = a * x    def bar():        global a        b = a * 2        a = b + 1        print(a)    return bar()foo(1) # 3# self 隐式传递 -- 显式 优于 隐式# 当子类覆盖了父类的方法,但仍然想调用父类的方法class SelfTest():    def test(self):        print('self test')SelfTest.test(SelfTest()) # self testassert id(SelfTest.__dict__['test']) == id(SelfTest.test.__func__)# 古典类 classic classclass A: pass# 新式类 new style classclass B(object): passclass D(dict): pass# 元类 metaclassclass C(type): passa = Ab = B()c = C(str)d = D()print(type(a)) # <type 'classobj'>print(b.__class__, type(b)) # (<class '__main__.B'>, <class '__main__.B'>)print(c.__class__, type(c)) # (<type 'type'>, <type 'type'>)print(d.__class__, type(d)) # (<class '__main__.D'>, <class '__main__.D'>)# 菱形继承 - 应避免出现try:    class A(object): pass    class B(object): pass    class C(A, B): pass    class D(B, A): pass    class E(C, D): passexcept:    print('菱形继承 - '+'order (MRO) for bases B, A')# __dict__[] 描述符,实例调用方法为bound,类调用方法为unboundclass MyClass(object):    def my_method(self):        print('my method')print(MyClass.__dict__['my_method'], MyClass.my_method)# (<function my_method at 0x03B62630>, <unbound method MyClass.my_method>)print(MyClass.__dict__['my_method'](MyClass()), MyClass.my_method(MyClass()))a = MyClass()print(a.my_method, MyClass.my_method)# (<bound method MyClass.my_method of <__main__.MyClass object at 0x038D3650>>, <unbound method MyClass.my_method>)print(a.my_method.im_self, MyClass.my_method.im_self)# (<__main__.MyClass object at 0x0391D650>, None)# __getattribute__()总会被调用,而__getattr__()只有在__getattribute__()中引发异常的情况下才会被调用class AA(object):    def __init__(self, name):        self.name  = name        self.x = 20    def __getattr__(self, name):        print('call __getattr__:', name)        if name == 'z':            return self.x ** 2        elif name == 'y':            return self.x ** 3    def __getattribute__(self, attr):        print('call __getattribute__:', attr)        try:            return super(AA, self).__getattribute__(attr)        except KeyError:            return 'default'a = AA("attribute")print(a.name) # attributeprint(a.z) # 400if hasattr(a, 'test'): # 动态添加了 test 属性,但不会在 __dict__ 中显示    c = a.test    print(c) # Noneelse:    print('instance a has no attribute t')print(a.__dict__) # {'x': 20, 'name': 'attribute'} 没有‘test’# 数据描述符:一个对象同时定义了__get__()__set__()方法,高级 - property装饰符# 普通描述符:一种较为低级的控制属性访问机制class Some_Class(object):    _x = None    def __init__(self):        self._x = None    @property    def x(self):        return self._x    @x.setter    def x(self, value):        self._x = value    @x.getter    def x(self):        return self._x    @x.deleter    def x(self):        del self._xobj = Some_Class()obj.x = 10print(obj.x + 2) # 12print(obj.__dict__) # {'_x': 10}del obj.xprint(obj.x) # Noneprint(obj.__dict__) # {}# metaclass元类是类的模板,元类的实例为类# 当你面临一个问题还在纠结要不要使用元类时,往往会有其他更为简单的解决方案# 元方法可以从元类或者类中调用,不能从类的实例中调用。# 类方法可以从类中调用,也可以从类的实例中调用class TypeSetter(object):    def __init__(self, fieldtype):        print('TYpeSetter __init__', fieldtype)        self.fieldtype = fieldtype    def is_valid(self, value):        return isinstance(value, self.fieldtype)class TypeCheckMeta(type): # type为父类,是对type的重写,作为一个元类    def __new__(cls, name, bases, dict):        print('TypeCheckMeta __new__', name, bases, dict)        return super(TypeCheckMeta, cls).__new__(cls, name, bases, dict)    def __init__(self, name, bases, dict):        self._fields = {}        for key,value in dict.items():            if isinstance(value, TypeSetter):                self._fields[key] = value    def sayHi(cls):        print('HI')class TypeCheck(object):    __metaclass__ = TypeCheckMeta    # 所有继承该类的子类都将使用元类来指导类的生成    # 若未设置__metaclass__,使用默认的type元类来生成类    def __setattr__(self, key, value):        print('TypeCheck __setattr__')        if key in self._fields:            if not self._fields[key].is_valid(value):                raise TypeError('Invalid type for field')        super(TypeCheck, self).__setattr__(key, value)class MetaTest(TypeCheck): # 由元类 TypeCheckMeta 指导生成    name = TypeSetter(str)    num = TypeSetter(int)mt = MetaTest()mt.name = 'apple'mt.num = 100MetaTest.sayHi() # 元方法可以从元类或者类中调用,不能从类的实例中调用。# ('TypeCheckMeta __new__', 'TypeCheck', (<type 'object'>,), {'__module__': '__main__', '__metaclass__': <class '__main__.TypeCheckMeta'>, '__setattr__': <function __setattr__ at 0x0393DA70>})# ('TYpeSetter __init__', <type 'str'>)# ('TYpeSetter __init__', <type 'int'>)# ('TypeCheckMeta __new__', 'MetaTest', (<class '__main__.TypeCheck'>,), {'__module__': '__main__', 'num': <__main__.TypeSetter object at 0x03951D50>, 'name': <__main__.TypeSetter object at 0x03951CF0>})# TypeCheck __setattr__# TypeCheck __setattr__# HI# 协议:一种松散的约定,没有相应的接口定义。# 迭代器:统一的访问容器或集合 + 惰性求值 + 多多使用,itertoolsfrom itertools import *# print(''.join(i) for i in product('AB', repeat = 2))for i in product('ABCD', repeat = 2):    print(''.join(i)), # AA AB AC AD BA BB BC BD CA CB CC CD DA DB DC DDprintfor i in combinations('ABCD', 2): # AB AC AD BC BD CD    print(''.join(i)),print# 生成器:按一定的算法生成一个序列。# 生成器函数:使用了 yield,返回一个迭代器,以生成器的对象放回。def fib(n):    a, b = 1, 1    while a < n:        test = (yield a)        print('test:', test)        a, b = b, a+bfor i, f in enumerate(fib(10)):    print(f), # 1 1 2 3 5 8# 调用生成器函数时,函数体并不执行,当第一次调用next()方法时才开始执行,并执行到yield表达式后中止。generator = fib(10)print(generator, generator.next(), generator.next()) # (<generator object fib at 0x03A39EB8>, 1, 1)print(generator.send(3)) # ('test:', 3)# yield 与 上下文管理器 结合from contextlib import contextmanager@contextmanagerdef tag(name):    print('<%s>' % name)    yield    print('<%s>' % name)with tag('hi'):    print('hello')# <hi># hello# <hi># GIL : Global Interpreter Lock 全局解释器锁# sys.setcheckinterval 自动线程间切换,默认每隔100个时钟# 单核上的多线程本质上是顺序执行的# 多核的效率比较低,考虑 multiprocessing'''无论使用何种语言开发,无论开发的是何种类型,何种规模的程序,都存在这样一点相同之处。即:一定比例的内存块的生存周期都比较短,通常是几百万条机器指令的时间,而剩下的内存块,起生存周期比较长,甚至会从程序开始一直持续到程序结束。'''# 引用计数算法 - 无法解决循环引用问题 - 设置threshold阈值 gc 模块import gcprint(gc.isenabled()) # Trueprint(gc.get_threshold()) # (700, 10, 10)print(gc.garbage) # []# 循环引用可以使一组对象的引用计数不为0,然而这些对象实际上并没有被任何外部对象所引用,# 它们之间只是相互引用。这意味着不会再有人使用这组对象,应该回收这组对象所占用的内存空间,# 然后由于相互引用的存在,每一个对象的引用计数都不为0,因此这些对象所占用的内存永远不会被释放。a = []b = []a.append(b)b.append(a)print(a, b) # ([[[...]]], [[[...]]])# python解决方案:当某些内存块M经过了3次垃圾收集的清洗之后还存活时,我们就将内存块M划到一个集合A中去,# 而新分配的内存都划分到集合B中去。当垃圾收集开始工作时,大多数情况都只对集合B进行垃圾回收,# 而对集合A进行垃圾回收要隔相当长一段时间后才进行,这就使得垃圾收集机制需要处理的内存少了,效率自然就提高了。# 在这个过程中,集合B中的某些内存块由于存活时间长而会被转移到集合A中,# 当然,集合A中实际上也存在一些垃圾,这些垃圾的回收会因为这种分代的机制而被延迟。# Python中,总共有3“,也就是Python实际上维护了3条链表# PyPI : Python Package Index - Python包索引# https://pypi.python.org/pypi/{package}# python setup.py install# PyUnit unittest模块 - 测试代码先于被测试的代码,更有利于明确需求。# import unittest# unittest.main()# 使用 Pylint 检查代码风格# 代码审查工具:review board# 将包发布到PyPI,供下载使用 - 这个流程需要走一遍# 代码优化:# 优先保证代码是可工作的# 权衡优化的代价# 定义性能指标,集中力量解决首要问题# 不要忽略可读性# 定位性能瓶颈问题 - CProfileimport cProfiledef foo():    sum = 0    for i in range(100):        sum += i    return sumcProfile.run('foo()') # 针对 foo() 函数的运行时间分布统计# 算法的评价 = 时间复杂度(重点) + 空间复杂度(硬件),一般采用以空间换时间的方法# O(1)<O(logn)<O(n)<O(nlogn)<O(n2)<O(cn)<O(n!)<O(nn)# 循环优化:减少循环过程中的计算量,将内层计算提到上一层# 使用不同的数据结构优化性能# 列表 list# 栈和队列 deque# heapify()将序列容器转化为堆 heapqimport heapqimport randomlist0 = [random.randint(0,100) for i in range(10)]print(list0) #[55, 62, 17, 56, 82, 45, 87, 48, 65, 32]heapq.heapify(list0)print(list0) # [17, 32, 45, 48, 62, 55, 87, 56, 65, 82]import arraya = array.array('c', 'string')print(a.tostring()) # stringimport sysprint(sys.getsizeof(a)) # 28print(sys.getsizeof(list('string'))) # 72import timeitt = timeit.Timer("''.join(list('string'))")print(t.timeit()) # 0.688437359057t = timeit.Timer("a.tostring()", "import array; a = array.array('c', 'string')")print(t.timeit()) # 0.163860804606# set 集合的使用list0 = [i for i in range(10)]list1 = [i for i in range(20)]print(set(list0)&set(list1)) # set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])# 进程同步:multiprocessing - Pipe, Queue - 解决多核下的GIL效率问题# 线程同步:threading - Lock, Event, Condition, Semaphore# 线程的生命周期:创建,就绪,运行,阻塞,终止# 避免多次创建线程 - 线程池 threadpool
阅读全文
0 0