caffe2 教程入门(python版)

来源:互联网 发布:淘宝联盟卖家能看见吗 编辑:程序博客网 时间:2024/06/05 10:32

http://www.jianshu.com/p/5c0fd1c9fef9?from=timeline

学习思路

1、先看官方文档,学习如何使用python调用caffe2包,包括

  • Basics of Caffe2 - Workspaces, Operators, and Nets
  • Toy Regression
  • Image Pre-Processing
  • Loading Pre-Trained Models
  • MNIST - Create a CNN from Scratch

caffe2官方教程以python语言为主,指导如何使用python调用caffe2,文档依次从最基本caffe中的几个重要的类的概念、如何使用基础类搭建一个小网络、如何数据预处理、如何使用预训练的模型、如何构造复杂的网络来讲述caffe2的使用。初学者可以先行学习官方文档caffe2-tutorials,理解caffe2 中的网络构建、网络训练的理念与思路,体会caffe2与caffe在整体构造上的不同。

2、结合着caffe2源码看python实际调用的c++类

在python中,caffe2这个包中类与函数大部分是封装了源码文件夹caffe2/caffe2/core下的c++源文件,如基础数据类Tensor,操作类Operator等,通过使用python中类的使用,找到对应c++源码中类和函数的构造和实现,可以为使用c++直接构建和训练网络打下准备。

以下总结基于官方文档和部分网络资料。

基础知识

首先从我们自己的角度出发来思考,假设我们自己需要写一个简单的多层神经网络并训练,一般逻辑上我们需要考虑数据的定义、数据的流动 、数据的更新。

  • 数据如何定义:训练数据和网络参数以什么形式存储
  • 数据如何流动:训练数据经过哪些运算得到输出,其实就是网络的定义
  • 数据如何更新:使用什么样的梯度更新方法与参数,其实就是如何训练

在caffe中,数据储存在Blob类的实例当中,在这里,我们可以理解blob就像是numpy中数组,起的作用就是存储数据。输入的blobs经过不同层的往前传递,得到输出的blobs,caffe中,我们可以认为对数据最基本的运算单位是layer。每一层的layer定义了不同的计算方式,数据经过不同的层,都做了相应的运算,由这些layers组合到一起网络即构成了net,net本质上是一个计算网络。当数据流动的方式构建好了,反向传递的梯度计算的方式也确定,在这个基础之上,caffe中使用solver类来给定梯度更新的规则,网络在solver的控制下,不断让数据前传,再反传求梯度,再使用梯度更新权值,循环往复。

所以对应着caffe中,基础组成有四类:

  • blob:存储数据和权值
  • layer:输入数据blob 形式,输出数据blob形式,层定义了计算
  • net:由多个layers组成,构成整体的网络
  • solver:定义了训练规则

再看caffe2中:

在caffe2中,operator是caffe2中的特色,取代了caffe中layer作为net的基本构造单位。如下图所示,我们可以使用一个InnerProduct操作运输符号来完成InnerProductLayer的功能。operator的接口定义在caffe2/proto/caffe2.proto,一般来说,operator接受一串输入,产生一串输出。


operator

由于operator定义很基础,很抽象,因此caffe2中的权值初始化、前传、反传、梯度更新都可以用operator实现,所以solver、layer类在caffe2中都不是必要的。在caffe2中,对应的基础组成有

  • blob:存储数据
  • operator:输入blob,输出blob,定义了计算规则
  • 网络:net,由多个operator组合实现
  • workspace:caffe中没有,可以理解成变量的空间,便于管理网络和变量

具体使用和理解如下,先用python:

在使用之前,我们先导入caffe2.core和workspace,基础的类和函数都在其中。同时我们需要导入caffe2.proto来对protobuf文件进行必要操作。

# We'll also import a few standard python librariesfrom matplotlib import pyplotimport numpy as npimport time# These are the droids you are looking for.from caffe2.python import core, workspacefrom caffe2.proto import caffe2_pb2# Let's show all plots inline.%matplotlib inline

1、workspace

我们可以把workspace理解成matlab中变量存储区,我们可以把定义好的数据blob或net放到都在一个workspace中,也可以用不用的workspace来区分。

下面我们打印一下当前workspace中blob情况。Blobs()取出blob,HasBlobs(name)判断是否有此名字的blob。

print("Current blobs in the workspace: {}".format(workspace.Blobs()))print("Workspace has blob 'X'? {}".format(workspace.HasBlob("X")))

一开始,当然结果是啥也没有。

我们使用FeedBlob来给当前workspace添加blob,再打印出来:

X = np.random.randn(2, 3).astype(np.float32)print("Generated X from numpy:\n{}".format(X))workspace.FeedBlob("X", X)
Generated X from numpy:[[-0.56927377 -1.28052795 -0.95808828] [-0.44225693 -0.0620895  -0.50509363]]
print("Current blobs in the workspace: {}".format(workspace.Blobs()))print("Workspace has blob 'X'? {}".format(workspace.HasBlob("X")))print("Fetched X:\n{}".format(workspace.FetchBlob("X")))
Current blobs in the workspace: [u'X']Workspace has blob 'X'? TrueFetched X:[[-0.56927377 -1.28052795 -0.95808828] [-0.44225693 -0.0620895  -0.50509363]]

当然,我们也用多个名字定义多个workspace,并且可以切换工作空间。我们可以使用currentworkspace()在访问当前工作空间,使用switchworkspace(name)来切换工作空间。

print("Current workspace: {}".format(workspace.CurrentWorkspace()))print("Current blobs in the workspace: {}".format(workspace.Blobs()))# Switch the workspace. The second argument "True" means creating# the workspace if it is missing.workspace.SwitchWorkspace("gutentag", True)# Let's print the current workspace. Note that there is nothing in the# workspace yet.print("Current workspace: {}".format(workspace.CurrentWorkspace()))print("Current blobs in the workspace: {}".format(workspace.Blobs()))
Current workspace: defaultCurrent blobs in the workspace: ['X']Current workspace: gutentagCurrent blobs in the workspace: []

总结一下,在这里workspace功能类似于matlab中的工作区,变量存储在其中,我们可以通过工作区去访问在工作区中net和blob。

2、Operators

通常我们在python中,可以使用core.CreateOperator来直接创造,也可以使用core.Net来访问创建operator,还可以使用modelHelper来访问创建operators。在这里我们使用core.CreateOperator来简单理解operator,在实际情况下,我们创建网络的时候,不会直接创建每个operator,这样太麻烦,一般使用modelhelper来帮忙我们创建网络。

# Create an operator.op = core.CreateOperator(    "Relu", # The type of operator that we want to run    ["X"], # A list of input blobs by their names    ["Y"], # A list of output blobs by their names)# and we are done!

上面的代码创建了一个Relu运算符,在这里需要知道,在python中创建一个operator,只是定义了一个operator,其实并没有运行这个operator。在上面代码中创建的op,实际上是一个protobuf对象。

print("Type of the created op is: {}".format(type(op)))print("Content:\n")print(str(op))
Type of the created op is: <class 'caffe2.proto.caffe2_pb2.OperatorDef'>Content:input: "X"output: "Y"name: ""type: "Relu"

在创造op之后,我们在当前的工作区中添加输入X,然后使用RunOperatorOnce运行这个operator。运行之后,我们对比下得到的结果。

workspace.FeedBlob("X", np.random.randn(2, 3).astype(np.float32))workspace.RunOperatorOnce(op)
print("Current blobs in the workspace: {}\n".format(workspace.Blobs()))print("X:\n{}\n".format(workspace.FetchBlob("X")))print("Y:\n{}\n".format(workspace.FetchBlob("Y")))print("Expected:\n{}\n".format(np.maximum(workspace.FetchBlob("X"), 0)))
Current blobs in the workspace: ['X', 'Y']X:[[ 1.03125858  1.0038228   0.0066975 ] [ 1.33142471  1.80271244 -0.54222912]]Y:[[ 1.03125858  1.0038228   0.0066975 ] [ 1.33142471  1.80271244  0.        ]]Expected:[[ 1.03125858  1.0038228   0.0066975 ] [ 1.33142471  1.80271244  0.        ]]

此外,operator相对于layer更为抽象。operator不仅仅可以替代layer类,还可以接受无参数的输入来输出数据,从而用来生成数据,常用来初始化权值。下面这一段就可以用来初始化权值。

op = core.CreateOperator(    "GaussianFill",    [], # GaussianFill does not need any parameters.    ["W"],    shape=[100, 100], # shape argument as a list of ints.    mean=1.0,  # mean as a single float    std=1.0, # std as a single float)print("Content of op:\n")print(str(op))
Content of op:output: "W"name: ""type: "GaussianFill"arg {  name: "std"  f: 1.0}arg {  name: "shape"  ints: 100  ints: 100}arg {  name: "mean"  f: 1.0}
workspace.RunOperatorOnce(op)temp = workspace.FetchBlob("Z")pyplot.hist(temp.flatten(), bins=50)pyplot.title("Distribution of Z")

3、Nets

Nets是一系列operator的集合,从本质上,是由operator构成的计算图。Caffe2中core.net 封装了源码中 NetDef 类。我们举个栗子,创建网络来实现以下的公式。

X = np.random.randn(2, 3)W = np.random.randn(5, 3)b = np.ones(5)Y = X * W^T + b

首先创建网络:

net = core.Net("my_first_net")print("Current network proto:\n\n{}".format(net.Proto()))
Current network proto:name: "my_first_net"

首先使用生成权值和输入,在这里,使用core.net来访问创建:

X = net.GaussianFill([], ["X"], mean=0.0, std=1.0, shape=[2, 3], run_once=0)print("New network proto:\n\n{}".format(net.Proto()))W = net.GaussianFill([], ["W"], mean=0.0, std=1.0, shape=[5, 3], run_once=0)b = net.ConstantFill([], ["b"], shape=[5,], value=1.0, run_once=0)

生成输出:

Y = net.FC([X, W, b], ["Y"])

我们打印下当前的网络:

print("Current network proto:\n\n{}".format(net.Proto()))
Current network proto:name: "my_first_net"op {  output: "X"  name: ""  type: "GaussianFill"  arg {    name: "std"    f: 1.0  }  arg {    name: "run_once"    i: 0  }  arg {    name: "shape"    ints: 2    ints: 3  }  arg {    name: "mean"    f: 0.0  }}op {  output: "W"  name: ""  type: "GaussianFill"  arg {    name: "std"    f: 1.0  }  arg {    name: "run_once"    i: 0  }  arg {    name: "shape"    ints: 5    ints: 3  }  arg {    name: "mean"    f: 0.0  }}op {  output: "b"  name: ""  type: "ConstantFill"  arg {    name: "run_once"    i: 0  }  arg {    name: "shape"    ints: 5  }  arg {    name: "value"    f: 1.0  }}op {  input: "X"  input: "W"  input: "b"  output: "Y"  name: ""  type: "FC"}

在这里,我们可以画出来定义的网络:

from caffe2.python import net_drawerfrom IPython import displaygraph = net_drawer.GetPydotGraph(net, rankdir="LR")display.Image(graph.create_png(), width=800)

和operator类似,在这里我们只定义了一个net,但是并没有运行net的计算。当我们在python运行网络时,实际上在c++层面做了两件事情:

  • 由protobuf定义初始化c++ 的net对象
  • 调用初始化了的net的run函数

在python中有两种方法来运行一个net:

  • 方法1:使用workspace.RunNetOnce,初始化网络,运行网络,然后销毁网络。
  • 方法2:先使用workspace.CreateNet初始化网络,然后使用workspace.RunNet来运行网络

方法一:

workspace.ResetWorkspace()print("Current blobs in the workspace: {}".format(workspace.Blobs()))workspace.RunNetOnce(net)print("Blobs in the workspace after execution: {}".format(workspace.Blobs()))# Let's dump the contents of the blobsfor name in workspace.Blobs():    print("{}:\n{}".format(name, workspace.FetchBlob(name)))
Current blobs in the workspace: []Blobs in the workspace after execution: ['W', 'X', 'Y', 'b']W:[[-0.29295802  0.02897477 -1.25667715] [-1.82299471  0.92877913  0.33613944] [-0.64382178 -0.68545657 -0.44015241] [ 1.10232282  1.38060772 -2.29121733] [-0.55766547  1.97437167  0.39324901]]X:[[-0.47522315 -0.40166432  0.7179445 ] [-0.8363331  -0.82451206  1.54286408]]Y:[[ 0.22535783  1.73460138  1.2652775  -1.72335696  0.7543118 ] [-0.71776152  2.27745867  1.42452145 -4.59527397  0.4452306 ]]b:[ 1.  1.  1.  1.  1.]

方法二:

workspace.ResetWorkspace()print("Current blobs in the workspace: {}".format(workspace.Blobs()))workspace.CreateNet(net)workspace.RunNet(net.Proto().name)print("Blobs in the workspace after execution: {}".format(workspace.Blobs()))for name in workspace.Blobs():    print("{}:\n{}".format(name, workspace.FetchBlob(name)))
Current blobs in the workspace: []Blobs in the workspace after execution: ['W', 'X', 'Y', 'b']W:[[-0.29295802  0.02897477 -1.25667715] [-1.82299471  0.92877913  0.33613944] [-0.64382178 -0.68545657 -0.44015241] [ 1.10232282  1.38060772 -2.29121733] [-0.55766547  1.97437167  0.39324901]]X:[[-0.47522315 -0.40166432  0.7179445 ] [-0.8363331  -0.82451206  1.54286408]]Y:[[ 0.22535783  1.73460138  1.2652775  -1.72335696  0.7543118 ] [-0.71776152  2.27745867  1.42452145 -4.59527397  0.4452306 ]]b:[ 1.  1.  1.  1.  1.]

在这里,大家可能比较疑惑为什么会有两种运行网络的方式,在之后的实际应用中,大家就会慢慢理解,在这里,暂时记住有这样两种运行网络的方式即可。

总结一下,在caffe2中

  • workspace是工作空间,在worspace中,可以存储网络结构类Net和数据存储类Blob.
  • 输入数据、权值、输出数据都存储在Blob中
  • Operator类用来定义来数据如何计算,由多个operators构成Net,operator的作用强大
  • Net类是由operator构成的整体。

应用举例

在基础知识中,我们理解了workspace,operator,net等基本的概念,在这里我们结合caffe2的官方文档简单举出几个例子。

栗子1-回归的小栗子

第一个栗子帮助大家理解caffe2框架网络构建、参数初始化、训练、图等的一些关于整体框架的理念。

假设我们要做训练一个简单的网络,拟合下面这样的一个回归函数:

y = wx + b其中:w=[2.0, 1.5]  b=0.5

一般训练数据是从外部读进来,在这里训练数据我们直接用caffe2中的operator生成,我们在后面的栗子中有会举例说明如何从外部读入数据。

首先导入必要的包:

from caffe2.python import core, cnn, net_drawer, workspace, visualizeimport numpy as npfrom IPython import displayfrom matplotlib import pyplot

在这里,首先我们需要建立两个网络图:

  • 一个用来生成训练数据、初始化权值的网络图
  • 一个用来用来训练,更新剃度的网络图

这里caffe2的思路和caffe不太一样,在caffe中,我们在训练网络中定义好了参数的初始化方式,网络加载时,程序会根据网络定义,自动初始化权值,我们只需要对这个网络,使用solver不断的前传和反传,更新参数即可。在caffe2中,我们要把所有网络的搭建、初始化、梯度生成、梯度更新都使用operator这样一个方式来实现,所有的数据的生成、流动都要在图中反映出来。这样,那么初始化这一部分我就需要一些operators来实现,这些operators组成的net,我们把它单独拿出来,称它为用于初始化的网络。我们可以结合着代码来理解。

首先,我们创建一个生成训练数据和初始化权值的网络。

init_net = core.Net("init")# The ground truth parameters.W_gt = init_net.GivenTensorFill(    [], "W_gt", shape=[1, 2], values=[2.0, 1.5])B_gt = init_net.GivenTensorFill([], "B_gt", shape=[1], values=[0.5])# Constant value ONE is used in weighted sum when updating parameters.ONE = init_net.ConstantFill([], "ONE", shape=[1], value=1.)# ITER is the iterator count.ITER = init_net.ConstantFill([], "ITER", shape=[1], value=0, dtype=core.DataType.INT32)# For the parameters to be learned: we randomly initialize weight# from [-1, 1] and init bias with 0.0.W = init_net.UniformFill([], "W", shape=[1, 2], min=-1., max=1.)B = init_net.ConstantFill([], "B", shape=[1], value=0.0)print('Created init net.')

接下来,我们定义一个用来训练的网络。

train_net = core.Net("train")# First, we generate random samples of X and create the ground truth.X = train_net.GaussianFill([], "X", shape=[64, 2], mean=0.0, std=1.0, run_once=0)Y_gt = X.FC([W_gt, B_gt], "Y_gt")# We add Gaussian noise to the ground truthnoise = train_net.GaussianFill([], "noise", shape=[64, 1], mean=0.0, std=1.0, run_once=0)Y_noise = Y_gt.Add(noise, "Y_noise")# Note that we do not need to propagate the gradients back through Y_noise,# so we mark StopGradient to notify the auto differentiating algorithm# to ignore this path.Y_noise = Y_noise.StopGradient([], "Y_noise")# Now, for the normal linear regression prediction, this is all we need.Y_pred = X.FC([W, B], "Y_pred")# The loss function is computed by a squared L2 distance, and then averaged# over all items in the minibatch.dist = train_net.SquaredL2Distance([Y_noise, Y_pred], "dist")loss = dist.AveragedLoss([], ["loss"])

我们来画出我们定义的训练网络的图:

graph = net_drawer.GetPydotGraph(train_net.Proto().op, "train", rankdir="LR")display.Image(graph.create_png(), width=800)

在这里,通过上面的图,我们可以看到init_net部分生成了训练数据、初始化的权值W,以及用来生成计算过程中需要的常数矩阵,而train_net构建了前向计算过程。

但是我们还没有定义如何反向传导,和很多其他的深度学习框架类似,caffe2支持自动梯度推导,自动生成产生梯度的operator。

接下来,我们给train_net加上梯度运算:

# Get gradients for all the computations above.gradient_map = train_net.AddGradientOperators([loss])graph = net_drawer.GetPydotGraph(train_net.Proto().op, "train", rankdir="LR")display.Image(graph.create_png(), width=800)

可以看到,网络后半部分进行了求梯度运算,输出了各学习参数的梯度值,当我们得到这些梯度值后,我们再获得当前训练的学习率,我们就可以使用梯度下降方法更新参数。

接下来,我们在train_net加上SGD更新的部分:

# Increment the iteration by one.train_net.Iter(ITER, ITER)# Compute the learning rate that corresponds to the iteration.LR = train_net.LearningRate(ITER, "LR", base_lr=-0.1,                            policy="step", stepsize=20, gamma=0.9)# Weighted sumtrain_net.WeightedSum([W, ONE, gradient_map[W], LR], W)train_net.WeightedSum([B, ONE, gradient_map[B], LR], B)# Let's show the graph again.graph = net_drawer.GetPydotGraph(train_net.Proto().op, "train", rankdir="LR")display.Image(graph.create_png(), width=800)

到这里,整个模型的参数初始化、前传、反传、梯度更新全都使用operator定义好了。这个就是caffe2中使用operator的威力,它使得caffe2较caffe具有不可比拟的灵活性。在这里注意,我们只是定义了网络,还没有运行网络,下面让我们来运行它们:

workspace.RunNetOnce(init_net)workspace.CreateNet(train_net)print("Before training, W is: {}".format(workspace.FetchBlob("W")))print("Before training, B is: {}".format(workspace.FetchBlob("B")))
TrueBefore training, W is: [[-0.77634162 -0.88467366]]Before training, B is: [ 0.]
#run the train net 100 times for i in range(100):    workspace.RunNet(train_net.Proto().name)print("After training, W is: {}".format(workspace.FetchBlob("W")))print("After training, B is: {}".format(workspace.FetchBlob("B")))print("Ground truth W is: {}".format(workspace.FetchBlob("W_gt")))print("Ground truth B is: {}".format(workspace.FetchBlob("B_gt")))

在这里,我们需要注意一点,我们使用了RunNetOnce和RunNet两种不同的方式来运行网络,还记得两种运行网络的方式么?

  • 方法1:使用workspace.RunNetOnce,这个函数会初始化网络,运行网络,然后销毁网络。
  • 方法2:先使用workspace.CreateNet初始化网络,然后使用workspace.RunNet来运行网络

一开始我也不明白为什么要有两种方式运行网络,现在结合init_net和train_net来看,就非常明白了。RunNetOnce用来运行生成权值和数据的网络,常用于初始化,这样的网络一次生成完,权值输出或数据就存在当前的workspace中,网络本身就没有存在的必要了,就直接销毁,而RunNet可以用来重复训练网络,一开始使用CreateNet,不断迭代调用RunNet就可以不断运行网络更新参数了。

以下是训练结果:

After training, W is: [[ 1.95769441  1.47348857]]After training, B is: [ 0.45236012]Ground truth W is: [[ 2.   1.5]]Ground truth B is: [ 0.5]

,总结一下:

  • caffe2中使用operator完成初始化参数、前传、反传、梯度更新
  • caffe2中一个模型通常包含一个初始化网络,一个训练网络

最后,还要说明一点,这个例子中,我们直接使用operator来构建网络。对于常见的深度网络,直接用operator构建会步骤会非常繁琐,所以caffe2中为了简化网络的搭建,又封装了model_helper类来帮助我们方便地搭建网络,譬如对于卷积神经网络中的常见的层,我们就可以直接使用model_helper来构建。在之后的栗子中也有说明。

栗子二-图像预处理

众所周知,网络中训练需要做一系列的数据预处理,在这里,caffe和caffe2中处理的方式一样。都需要经过XXX等步。因为没有什么区别,在这里就不举了,直接参考官方教程Image Pre-Processing,解释非常清楚。给个赞。

栗子三-加载预训练模型

首先,我们使用一个caffe2中定义的下载模块去下载一个预训练好的模型,命令行中输入如下的命令会下载squeezenet这个预训练模型:

python -m caffe2.python.models.download -i squeezenet

当下载完成时,在caffe2/python/model底下有一个squeezenet文件,文件夹底下有两个文件init_net.pb,predict_net.pb分别保存了权值和网络定义。

在python中我们使用caffe2的workspace来存放这个模型的网络定义和权重,并且把它们加载到blob、init_net和predict_net。我们需要使用一个workspace.Predictor来接收两个protobuf,然后剩下的就可以交给caffe2了。

所以一般加载预测模型只需要几步:

1、读入protobuf文件

 with open("init_net.pb") as f:     init_net = f.read() with open("predict_net.pb") as f:     predict_net = f.read()

2、使用workspace中的Predictor来加载从protobuf中取到的blobs:

 p = workspace.Predictor(init_net, predict_net)

3、运行网络,得到结果:

 results = p.run([img])

需要注意的这里的img是预处理过的图像。

以下是官方文档下的一个完整的栗子:

首先配置一下问文件路径等,导入常用包:

# where you installed caffe2. Probably '~/caffe2' or '~/src/caffe2'.CAFFE2_ROOT = "~/caffe2"# assumes being a subdirectory of caffe2CAFFE_MODELS = "~/caffe2/caffe2/python/models"# if you have a mean file, place it in the same dir as the model%matplotlib inlinefrom caffe2.proto import caffe2_pb2import numpy as npimport skimage.ioimport skimage.transformfrom matplotlib import pyplotimport osfrom caffe2.python import core, workspaceimport urllib2print("Required modules imported.")
IMAGE_LOCATION =  "https://cdn.pixabay.com/photo/2015/02/10/21/28/flower-631765_1280.jpg"# What model are we using? You should have already converted or downloaded one.# format below is the model's:# folder, INIT_NET, predict_net, mean, input image size# you can switch the comments on MODEL to try out different model conversionsMODEL = 'squeezenet', 'init_net.pb', 'predict_net.pb', 'ilsvrc_2012_mean.npy', 227# codes - these help decypher the output and source from a list from AlexNet's object codes to provide an result like "tabby cat" or "lemon" depending on what's in the picture you submit to the neural network.# The list of output codes for the AlexNet models (also squeezenet)codes =  "https://gist.githubusercontent.com/aaronmarkham/cd3a6b6ac071eca6f7b4a6e40e6038aa/raw/9edb4038a37da6b5a44c3b5bc52e448ff09bfe5b/alexnet_codes"print "Config set!"

定义数据预处理的函数:

def crop_center(img,cropx,cropy):    y,x,c = img.shape    startx = x//2-(cropx//2)    starty = y//2-(cropy//2)        return img[starty:starty+cropy,startx:startx+cropx]def rescale(img, input_height, input_width):    print("Original image shape:" + str(img.shape) + " and remember it should be in H, W, C!")    print("Model's input shape is %dx%d") % (input_height, input_width)    aspect = img.shape[1]/float(img.shape[0])    print("Orginal aspect ratio: " + str(aspect))    if(aspect>1):        # landscape orientation - wide image        res = int(aspect * input_height)        imgScaled = skimage.transform.resize(img, (input_width, res))    if(aspect<1):        # portrait orientation - tall image        res = int(input_width/aspect)        imgScaled = skimage.transform.resize(img, (res, input_height))    if(aspect == 1):        imgScaled = skimage.transform.resize(img, (input_width, input_height))    pyplot.figure()    pyplot.imshow(imgScaled)    pyplot.axis('on')    pyplot.title('Rescaled image')    print("New image shape:" + str(imgScaled.shape) + " in HWC")    return imgScaledprint "Functions set."# set paths and variables from model choice and prep imageCAFFE2_ROOT = os.path.expanduser(CAFFE2_ROOT)CAFFE_MODELS = os.path.expanduser(CAFFE_MODELS)# mean can be 128 or custom based on the model# gives better results to remove the colors found in all of the training imagesMEAN_FILE = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[3])if not os.path.exists(MEAN_FILE):    mean = 128else:    mean = np.load(MEAN_FILE).mean(1).mean(1)    mean = mean[:, np.newaxis, np.newaxis]print "mean was set to: ", mean# some models were trained with different image sizes, this helps you calibrate your imageINPUT_IMAGE_SIZE = MODEL[4]# make sure all of the files are around...if not os.path.exists(CAFFE2_ROOT):    print("Houston, you may have a problem.")INIT_NET = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[1])print 'INIT_NET = ', INIT_NETPREDICT_NET = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[2])print 'PREDICT_NET = ', PREDICT_NETif not os.path.exists(INIT_NET):    print(INIT_NET + " not found!")else:    print "Found ", INIT_NET, "...Now looking for", PREDICT_NET    if not os.path.exists(PREDICT_NET):        print "Caffe model file, " + PREDICT_NET + " was not found!"    else:        print "All needed files found! Loading the model in the next block."# load and transform imageimg = skimage.img_as_float(skimage.io.imread(IMAGE_LOCATION)).astype(np.float32)img = rescale(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)img = crop_center(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)print "After crop: " , img.shapepyplot.figure()pyplot.imshow(img)pyplot.axis('on')pyplot.title('Cropped')# switch to CHWimg = img.swapaxes(1, 2).swapaxes(0, 1)pyplot.figure()for i in range(3):    # For some reason, pyplot subplot follows Matlab's indexing    # convention (starting with 1). Well, we'll just follow it...    pyplot.subplot(1, 3, i+1)    pyplot.imshow(img[i])    pyplot.axis('off')    pyplot.title('RGB channel %d' % (i+1))# switch to BGRimg = img[(2, 1, 0), :, :]# remove mean for better resultsimg = img * 255 - mean# add batch sizeimg = img[np.newaxis, :, :, :].astype(np.float32)print "NCHW: ", img.shape

运行一下,输出结果:

Functions set.mean was set to:  128INIT_NET =  /home/aaron/models/squeezenet/init_net.pbPREDICT_NET =  /home/aaron/models/squeezenet/predict_net.pbFound  /home/aaron/models/squeezenet/init_net.pb ...Now looking for /home/aaron/models/squeezenet/predict_net.pbAll needed files found! Loading the model in the next block.Original image shape:(751, 1280, 3) and remember it should be in H, W, C!Model's input shape is 227x227Orginal aspect ratio: 1.70439414115New image shape:(227, 386, 3) in HWCAfter crop:  (227, 227, 3)NCHW:  (1, 3, 227, 227)

image output

image output

image output

当图像经过处理之后,就可以按照前面的安排加载和运行网络。

# initialize the neural netwith open(INIT_NET) as f:    init_net = f.read()with open(PREDICT_NET) as f:    predict_net = f.read()p = workspace.Predictor(init_net, predict_net)# run the net and return predictionresults = p.run([img])# turn it into something we can play with and examine which is in a multi-dimensional arrayresults = np.asarray(results)print "results shape: ", results.shape
results shape:  (1, 1, 1000, 1, 1)

这里输出来了1000个值,表示这张图片分别对应1000类的概率。我们可以取出来其中概率最高的值,来找到它对应的标签:

# the rest of this is digging through the resultsresults = np.delete(results, 1)index = 0highest = 0arr = np.empty((0,2), dtype=object)arr[:,0] = int(10)arr[:,1:] = float(10)for i, r in enumerate(results):    # imagenet index begins with 1!    i=i+1    arr = np.append(arr, np.array([[i,r]]), axis=0)    if (r > highest):        highest = r        index = iprint index, " :: ", highest# lookup the code and return the result# top 3 results# sorted(arr, key=lambda x: x[1], reverse=True)[:3]# now we can grab the code listresponse = urllib2.urlopen(codes)# and lookup our result from the listfor line in response:    code, result = line.partition(":")[::2]    if (code.strip() == str(index)):        print result.strip()[1:-2]
985  ::  0.979059daisy

栗子四-创建一个CNN模型

1、模型、帮助函数、brew

在前面我们已经基本介绍了在python中关于caffe2中基本的操作。

这个例子中,我们来简单搭建一个CNN模型。在这个需要说明一点:

  • 在caffe中,我们通常说一个模型,其实就是一个网络,一个Net
  • 而在caffe2中,我们通常使用modelHelper来代表一个model,而这个model包含多个Net,就像我们前面看到的,我们会使用一个初始化网络init_net,还有有一个训练网络net,这两个网络图都是model的一部分。

这一点需要大家区分开,不然容易疑惑。举例,如果我们要构造一个模型,只有一个FC层,在这里使用modelHelper来表示一个model,使用operators来构造网络,一般model有一个param_init_net和一个net。分别用于模型初始化和训练:

model = model_helper.ModelHelper(name="train")# initialize your weightweight = model.param_init_net.XavierFill(    [],    blob_out + '_w',    shape=[dim_out, dim_in],    **kwargs, # maybe indicating weight should be on GPU here)# initialize your biasbias = model.param_init_net.ConstantFill(    [],    blob_out + '_b',    shape=[dim_out, ],    **kwargs,)# finally building FCmodel.net.FC([blob_in, weights, bias], blob_out, **kwargs)

前面,我们说过在日常搭建网络的时候呢,我们通常不是完全使用operator搭建网络,因为使用这种方式,每个参数都需要我们手动初始化,以及每个operator都需要构造,太过于繁琐。我们想着,对于常用层,能不能把构造它的operators都封装起来,封装成一个函数,我们构造时只需给这个函数要提供必要的参数,函数中的代码就能帮助我们完成层初始化和operator的构建。

在caffe2中,为了便于开发者搭建网络,caffe2在python/helpers中提供了许多help函数,像上面例子中的FC层,使用python/helpers/fc.py来构造,非常简单就一行代码:

fcLayer = fc(model, blob_in, blob_out, **kwargs) # returns a blob reference

这里面help函数能够帮助我们将权值初始化和计算网络自动分开到两个网络,这样一来就简单多了。caffe2为了更方便调用和管理,把这些帮助函数集合到一起,放在brew这个包里面。可以通过导入brew这个包来调用这些帮助函数。像上面的fc层的实现就可以使用:

from caffe2.python import brewbrew.fc(model, blob_in, blob_out, ...)

我们使用brew构造网络就十分简单,下面的代码就构造了一个LeNet模型:

from caffe2.python import brewdef AddLeNetModel(model, data):    conv1 = brew.conv(model, data, 'conv1', 1, 20, 5)    pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)    conv2 = brew.conv(model, pool1, 'conv2', 20, 50, 5)    pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)    fc3 = brew.fc(model, pool2, 'fc3', 50 * 4 * 4, 500)    fc3 = brew.relu(model, fc3, fc3)    pred = brew.fc(model, fc3, 'pred', 500, 10)    softmax = brew.softmax(model, pred, 'softmax')

caffe2 使用brew提供很多构造网络的帮助函数,大大简化了我们构建网络的过程。但实际上,这些只是封装的结果,网络构造的原理和之前说的使用operators构建的原理是一样的。

2、创建一个CNN模型用于MNIST手写体数据集

首先,导入必要的包:

%matplotlib inlinefrom matplotlib import pyplotimport numpy as npimport osimport shutilfrom caffe2.python import core, model_helper, net_drawer, workspace, visualize, brew# If you would like to see some really detailed initializations,# you can change --caffe2_log_level=0 to --caffe2_log_level=-1core.GlobalInit(['caffe2', '--caffe2_log_level=0'])print("Necessities imported!")

下载MNIST dataset,并且把数据集转成leveldb:

./make_mnist_db --channel_first --db leveldb --image_file ~/Downloads/train-images-idx3-ubyte --label_file ~/Downloads/train-labels-idx1-ubyte --output_file ~/caffe2_notebooks/tutorial_data/mnist/mnist-train-nchw-leveldb./make_mnist_db --channel_first --db leveldb --image_file ~/Downloads/t10k-images-idx3-ubyte --label_file ~/Downloads/t10k-labels-idx1-ubyte --output_file ~/caffe2_notebooks/tutorial_data/mnist/mnist-test-nchw-leveldb
# This section preps your image and test set in a leveldbcurrent_folder = os.path.join(os.path.expanduser('~'), 'caffe2_notebooks')data_folder = os.path.join(current_folder, 'tutorial_data', 'mnist')root_folder = os.path.join(current_folder, 'tutorial_files', 'tutorial_mnist')image_file_train = os.path.join(data_folder, "train-images-idx3-ubyte")label_file_train = os.path.join(data_folder, "train-labels-idx1-ubyte")image_file_test = os.path.join(data_folder, "t10k-images-idx3-ubyte")label_file_test = os.path.join(data_folder, "t10k-labels-idx1-ubyte")# Get the dataset if it is missingdef DownloadDataset(url, path):    import requests, zipfile, StringIO    print "Downloading... ", url, " to ", path    r = requests.get(url, stream=True)    z = zipfile.ZipFile(StringIO.StringIO(r.content))    z.extractall(path)def GenerateDB(image, label, name):    name = os.path.join(data_folder, name)    print 'DB: ', name    if not os.path.exists(name):        syscall = "/usr/local/bin/make_mnist_db --channel_first --db leveldb --image_file " + image + " --label_file " + label + " --output_file " + name        # print "Creating database with: ", syscall        os.system(syscall)    else:        print "Database exists already. Delete the folder if you have issues/corrupted DB, then rerun this."        if os.path.exists(os.path.join(name, "LOCK")):            # print "Deleting the pre-existing lock file"            os.remove(os.path.join(name, "LOCK"))            if not os.path.exists(data_folder):                os.makedirs(data_folder)            if not os.path.exists(label_file_train):                DownloadDataset("https://download.caffe2.ai/datasets/mnist/mnist.zip", data_folder)            if os.path.exists(root_folder):                print("Looks like you ran this before, so we need to cleanup those old files...")                shutil.rmtree(root_folder)            os.makedirs(root_folder)            workspace.ResetWorkspace(root_folder)            # (Re)generate the leveldb database (known to get corrupted...)            GenerateDB(image_file_train, label_file_train, "mnist-train-nchw-leveldb")            GenerateDB(image_file_test, label_file_test, "mnist-test-nchw-leveldb")            print("training data folder:" + data_folder)            print("workspace root folder:" + root_folder)

在这里,我们使用modelHelper来代表我们的模型,使用brew和operators来搭建模型,modelHelper包含了两个net,包括param_init_net和net,分别代表初始化网络和主训练网络。

我们来一步一步分块构造模型:

(1)输入部分(AddInput function)(2)网络计算部分(AddLeNetModel function)(3)网络训练部分,添加梯度运算,更新等(AddTrainingOperators function)(4)记录统计部分,打印一些统计数据来观察(AddBookkeepingOperators function)

(1)输入部分(AddInput function)

AddInput会从DB加载data,AddInput加载完成之后,和得到data 和label:

- data with shape `(batch_size, num_channels, width, height)`    - in this case `[batch_size, 1, 28, 28]` of data type *uint8*- label with shape `[batch_size]` of data type *int*
def AddInput(model, batch_size, db, db_type):    # load the data    data_uint8, label = model.TensorProtosDBInput(        [], ["data_uint8", "label"], batch_size=batch_size,        db=db, db_type=db_type)    # cast the data to float    data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT)    # scale data from [0,255] down to [0,1]    data = model.Scale(data, data, scale=float(1./256))    # don't need the gradient for the backward pass    data = model.StopGradient(data, data)    return data, label

在这里简单解释一下AddInput中的一些操作,首先将data转换成float类型,这样做是因为我们主要做浮点运算。为了保证计算稳定,我们将图像从[0,255]缩放到[0,1],并且这里做的事占位运算,不需要保存未缩放之前的值。当计算反向过程中,这一部分不需要计算梯度,我们使用StopGradient来禁止梯度反传,这样自动生成梯度时,这个operator和它之前的operator就不会变了。

def AddInput(model, batch_size, db, db_type):    # load the data    data_uint8, label = model.TensorProtosDBInput(        [], ["data_uint8", "label"], batch_size=batch_size,        db=db, db_type=db_type)    # cast the data to float    data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT)    # scale data from [0,255] down to [0,1]    data = model.Scale(data, data, scale=float(1./256))    # don't need the gradient for the backward pass    data = model.StopGradient(data, data)    return data, label

在这个基础上,就是加入网络AddLenetModel,同时加入一个AddAccuracy来追踪模型的准确率:

def AddLeNetModel(model, data):    # Image size: 28 x 28 -> 24 x 24    conv1 = brew.conv(model, data, 'conv1', dim_in=1, dim_out=20, kernel=5)    # Image size: 24 x 24 -> 12 x 12    pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)    # Image size: 12 x 12 -> 8 x 8    conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=50, kernel=5)    # Image size: 8 x 8 -> 4 x 4    pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)    # 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size    fc3 = brew.fc(model, pool2, 'fc3', dim_in=50 * 4 * 4, dim_out=500)    fc3 = brew.relu(model, fc3, fc3)    pred = brew.fc(model, fc3, 'pred', 500, 10)    softmax = brew.softmax(model, pred, 'softmax')    return softmaxdef AddAccuracy(model, softmax, label):    accuracy = model.Accuracy([softmax, label], "accuracy")    return accuracy

接下来,我们将加入梯度生成和更新,这部分由AddTrainingOperators实现,梯度生成和更新和之前例子中的原理一样。

def AddTrainingOperators(model, softmax, label):

# something very important happens herexent = model.LabelCrossEntropy([softmax, label], 'xent')# compute the expected lossloss = model.AveragedLoss(xent, "loss")# track the accuracy of the modelAddAccuracy(model, softmax, label)# use the average loss we just computed to add gradient operators to the modelmodel.AddGradientOperators([loss])# do a simple stochastic gradient descentITER = model.Iter("iter")# set the learning rate scheduleLR = model.LearningRate(    ITER, "LR", base_lr=-0.1, policy="step", stepsize=1, gamma=0.999 )# ONE is a constant value that is used in the gradient update. We only need# to create it once, so it is explicitly placed in param_init_net.ONE = model.param_init_net.ConstantFill([], "ONE", shape=[1], value=1.0)# Now, for each parameter, we do the gradient updates.for param in model.params:    # Note how we get the gradient of each parameter - ModelHelper keeps    # track of that.    param_grad = model.param_to_grad[param]    # The update is a simple weighted sum: param = param + param_grad * LR    model.WeightedSum([param, ONE, param_grad, LR], param)# let's checkpoint every 20 iterations, which should probably be fine.# you may need to delete tutorial_files/tutorial-mnist to re-run the tutorialmodel.Checkpoint([ITER] + model.params, [],               db="mnist_lenet_checkpoint_%05d.leveldb",               db_type="leveldb", every=20)

接下来,我们使用AddBookkeepingOperations来打印一些统计数据供我们之后观察,这一部分不影响训练部分,只是统计,打印日志。

def AddBookkeepingOperators(model):    # Print basically prints out the content of the blob. to_file=1 routes the    # printed output to a file. The file is going to be stored under    #     root_folder/[blob name]    model.Print('accuracy', [], to_file=1)    model.Print('loss', [], to_file=1)    # Summarizes the parameters. Different from Print, Summarize gives some    # statistics of the parameter, such as mean, std, min and max.    for param in model.params:        model.Summarize(param, [], to_file=1)        model.Summarize(model.param_to_grad[param], [], to_file=1)    # Now, if we really want to be verbose, we can summarize EVERY blob    # that the model produces; it is probably not a good idea, because that    # is going to take time - summarization do not come for free. For this    # demo, we will only show how to summarize the parameters and their    # gradients.print("Bookkeeping function created")

在这里,我们一共做了四件事:

(1)输入部分(AddInput function)(2)网络计算部分(AddLeNetModel function)(3)网络训练部分,添加梯度运算,更新等(AddTrainingOperators function)(4)记录统计部分,打印一些统计数据来观察(AddBookkeepingOperators function)

基本的操作我们都定义好了,接下来调用定义模型,在这里,它定义了一个训练模型,用于训练,一个部署模型,用于部署:

arg_scope = {"order": "NCHW"}train_model = model_helper.ModelHelper(name="mnist_train", arg_scope=arg_scope)data, label = AddInput(    train_model, batch_size=64,    db=os.path.join(data_folder, 'mnist-train-nchw-leveldb'),    db_type='leveldb')softmax = AddLeNetModel(train_model, data)AddTrainingOperators(train_model, softmax, label)AddBookkeepingOperators(train_model)# Testing model. We will set the batch size to 100, so that the testing# pass is 100 iterations (10,000 images in total).# For the testing model, we need the data input part, the main LeNetModel# part, and an accuracy part. Note that init_params is set False because# we will be using the parameters obtained from the train model.test_model = model_helper.ModelHelper(    name="mnist_test", arg_scope=arg_scope, init_params=False)data, label = AddInput(    test_model, batch_size=100,    db=os.path.join(data_folder, 'mnist-test-nchw-leveldb'),    db_type='leveldb')softmax = AddLeNetModel(test_model, data)AddAccuracy(test_model, softmax, label)# Deployment model. We simply need the main LeNetModel part.deploy_model = model_helper.ModelHelper(    name="mnist_deploy", arg_scope=arg_scope, init_params=False)AddLeNetModel(deploy_model, "data")# You may wonder what happens with the param_init_net part of the deploy_model.# No, we will not use them, since during deployment time we will not randomly# initialize the parameters, but load the parameters from the db.

运行网络,打印loss曲线:

# The parameter initialization network only needs to be run once.workspace.RunNetOnce(train_model.param_init_net)# creating the networkworkspace.CreateNet(train_model.net)# set the number of iterations and track the accuracy & losstotal_iters = 200accuracy = np.zeros(total_iters)loss = np.zeros(total_iters)# Now, we will manually run the network for 200 iterations.for i in range(total_iters):    workspace.RunNet(train_model.net.Proto().name)    accuracy[i] = workspace.FetchBlob('accuracy')    loss[i] = workspace.FetchBlob('loss')# After the execution is done, let's plot the values.pyplot.plot(loss, 'b')pyplot.plot(accuracy, 'r')pyplot.legend(('Loss', 'Accuracy'), loc='upper right')

我们也可以输出来预测:

# Let's look at some of the data.pyplot.figure()data = workspace.FetchBlob('data')_ = visualize.NCHW.ShowMultiple(data)pyplot.figure()softmax = workspace.FetchBlob('softmax')_ = pyplot.plot(softmax[0], 'ro')pyplot.title('Prediction for the first image')


记得我们也定义了一个test_model,我们可以运行它得到测试集准确率,虽然test_model的权值由train_model来加载,但是测试数据输入还需要运行param_init_net。

# run a test pass on the test networkspace.RunNetOnce(test_model.param_init_net)workspace.CreateNet(test_model.net)test_accuracy = np.zeros(100)for i in range(100):    workspace.RunNet(test_model.net.Proto().name)    test_accuracy[i] = workspace.FetchBlob('accuracy')# After the execution is done, let's plot the values.pyplot.plot(test_accuracy, 'r')pyplot.title('Acuracy over test batches.')print('test_accuracy: %f' % test_accuracy.mean())
test_accuracy: 0.946700

这样,我们就简单的完成了模型的搭建、训练、部署。

这个教程是caffe2的python接口教程。教程例子基本都是官方提供的,只是加了些自己的理解思路,也简单对比了caffe,可能有疏忽和理解错的地方,敬请指正。

2017.07.07 cskenken



作者:陆姚知马力
链接:http://www.jianshu.com/p/5c0fd1c9fef9
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

原创粉丝点击