Netty源码 Recycler 对象池全面解析

来源:互联网 发布:js有集合吗 编辑:程序博客网 时间:2024/06/11 09:45

  众所周知Netty是一个高性能的NIO通信框架, Netty开发者都是很厉害的, 不仅框架设计很精巧,针对高性能做了很多优化, 很多细节方面都处理的很好. 做中间件用C语言开发当然是速度最快的, 用Java做NIO通信中间件, 需要对java语言有很深的认识, 做到扬长弊短.
  比如Java的面向对象编程, 提高了开发的效率, 但是面向对象编程的附属品垃圾回收机制, 在高并发场景下还是一个瓶颈, 特别是Netty的I/O通信采用的是非堆内存, 对这种内存对象垃圾回收效率会比JVM的堆内存效率低, 频繁的GC对虚拟机性能有很大影响. Netty中打交道最多个就是各种Buffer, 通信I/O都是在处理Buffer对象. 因为Buf对象实在使用太频繁了, 哪怕提升一点点, 对性能也是有不少提升的.
  下面我们就来看下Netty在这方面做了哪些优化. io.netty.util.Recycler 类是Netty自定义的一个对象池, 借助于这个类可以从对象池中获取对象, 使用完了回收到对象池中, 减少GC.我现在看的版本是Netty的4.1.13.Final版, 差不多是最新的版本了. Netty的开发社区还是很活跃的, 很多代码都在持续优化中, 有bug也都是能及时修复的.比如Recycler这个类, 也是一直在持续优化中, 比老版本的类功能更强大.

1. Recycler

  这是一个抽象类, 子类继承它时需要实现 newObject(Handle handle) 方法, 因为不同的子类针对不同的对象进行池化, 具体是什么对象由子类自己实现.
内部是用一个对象数组维护缓存的对象.
1. io.netty.util.Recycler#get方法 : 是获取对象池中对象的入口, 如果有可用对象,直接返回, 没有就调用上面提到的newObject方法创建一个.
2. io.netty.util.Recycler#recycle方法: 是对象使用完毕后回收对象的, 现在已经标记@Deprecated不建议使用了, 建议使用io.netty.util.Recycler.Handle方法. 可以看下4.0.x版本中都是用的这个方法, 这个方法只能回收当前线程创建的对象,负责直接返回false不回收,交给GC处理了. 方法io.netty.util.Recycler.DefaultHandle#recycle优势就是, 可以回收不是当前线程创建的对象, 复用性和性能更好了.

2. Stack

  这是Recycler中定义的一个类, 主要也只有Recycler会访问到, Stack就是维护对象池的数据结构了.上面提到的io.netty.util.Recycler#get方法是从FastThreadLocal从获取池中对象,所以这个对象池是各个线程独立的,也就是每个线程都对应一个Stack.
  FastThreadLocal是Netty自己定义的一个类似于JDK的ThreadLocal但是性能更高的一个数据结构,ThreadLocal内部访问数据是Map型的数据访问,FastThreadLocal内部是数组,直接通过索引访问会更快.

3. WeakOrderQueue

  这个Recycler私有的一个类,用来暂存待回收的对象.
  上面提到了io.netty.util.Recycler.DefaultHandle#recycle方法,可以回收不是当前线程创建的对象. 主要就是靠这个类实现的.
  recycle方法判断,如果是当前线程创建的对象, 直接就把对象放到当前线程对应的Stack中. 如果不是, 则放入WeakOrderQueue中, 当然WeakOrderQueue会和回收的对象所对应的Stack是相关联的. 在从Stack获取对象池时,如果对象池为空,会尝试从对应的WeakOrderQueue中恢复对象,这样就实现了回收的功能. WeakOrderQueue可以有多个, 多个WeakOrderQueue是一个链表结构, 可以依次访问.
  还有个东西要注意下,由于Stack是每个线程的本地变量,所以Stack里的所有方法都是线程安全的. 具体还用到了各种线程安全问题, 还有WeakReference弱引用的使用, 以及位运算控制内存池缓慢增长 等各种细节方面都考虑的很好, 确实很厉害. 要做到对这个类有充分的理解, 需要熟悉java的GC机制, 这块我后面还要再研究一下.

4. Recycler 源码全面解析 (详细说明和注释)

/** * Light-weight object pool based on a thread-local stack.  // 一个轻量的对象池 * * @param <T> the type of the pooled object */public abstract class Recycler<T> {    private static final InternalLogger logger = InternalLoggerFactory.getInstance(Recycler.class);    @SuppressWarnings("rawtypes")    private static final Handle NOOP_HANDLE = new Handle() {    // 表示一个不需要回收的包装对象        @Override        public void recycle(Object object) {    // 用于maxCapacityPerThread == 0时,关闭对象回收功能.            // NOOP        }    };    private static final AtomicInteger ID_GENERATOR = new AtomicInteger(Integer.MIN_VALUE); // 线程安全的自增计数器,用来做唯一标记的.    private static final int OWN_THREAD_ID = ID_GENERATOR.getAndIncrement();    //static变量, 生成并获取一个唯一id, 标记当前的线程.    private static final int DEFAULT_INITIAL_MAX_CAPACITY_PER_THREAD = 32768; // Use 32k instances as default.    private static final int DEFAULT_MAX_CAPACITY_PER_THREAD;                 // 每个线程的Stack最多缓存多少个对象    private static final int INITIAL_CAPACITY;                  // 初始化容量    private static final int MAX_SHARED_CAPACITY_FACTOR;        // 最大可共享的容量    private static final int MAX_DELAYED_QUEUES_PER_THREAD;     // WeakOrderQueue最大数量    private static final int LINK_CAPACITY;                     // WeakOrderQueue中的数组DefaultHandle<?>[] elements容量    private static final int RATIO;                             // 掩码    static {    // 这里做到了各种参数都是可配置的, 可以根据实际的压测情况, 调节对象池的参数        // In the future, we might have different maxCapacity for different object types.        // e.g. io.netty.recycler.maxCapacity.writeTask        //      io.netty.recycler.maxCapacity.outboundBuffer        int maxCapacityPerThread = SystemPropertyUtil.getInt("io.netty.recycler.maxCapacityPerThread",                SystemPropertyUtil.getInt("io.netty.recycler.maxCapacity", DEFAULT_INITIAL_MAX_CAPACITY_PER_THREAD));        if (maxCapacityPerThread < 0) {            maxCapacityPerThread = DEFAULT_INITIAL_MAX_CAPACITY_PER_THREAD;        }        DEFAULT_MAX_CAPACITY_PER_THREAD = maxCapacityPerThread;        MAX_SHARED_CAPACITY_FACTOR = max(2,                SystemPropertyUtil.getInt("io.netty.recycler.maxSharedCapacityFactor",                        2));        MAX_DELAYED_QUEUES_PER_THREAD = max(0,                SystemPropertyUtil.getInt("io.netty.recycler.maxDelayedQueuesPerThread",                        // We use the same value as default EventLoop number                        NettyRuntime.availableProcessors() * 2));        LINK_CAPACITY = safeFindNextPositivePowerOfTwo(                max(SystemPropertyUtil.getInt("io.netty.recycler.linkCapacity", 16), 16));        // By default we allow one push to a Recycler for each 8th try on handles that were never recycled before.      // 默认每过8次,允许回收一次        // This should help to slowly increase the capacity of the recycler while not be too sensitive to allocation    // 可以让recycler的容量缓慢的增大,避免爆发式的请求吧.        // bursts.        RATIO = safeFindNextPositivePowerOfTwo(SystemPropertyUtil.getInt("io.netty.recycler.ratio", 8));    // 值默认为8, 也就是二进制 1000        if (logger.isDebugEnabled()) {            if (DEFAULT_MAX_CAPACITY_PER_THREAD == 0) {                logger.debug("-Dio.netty.recycler.maxCapacityPerThread: disabled");                logger.debug("-Dio.netty.recycler.maxSharedCapacityFactor: disabled");                logger.debug("-Dio.netty.recycler.linkCapacity: disabled");                logger.debug("-Dio.netty.recycler.ratio: disabled");            } else {                logger.debug("-Dio.netty.recycler.maxCapacityPerThread: {}", DEFAULT_MAX_CAPACITY_PER_THREAD);                logger.debug("-Dio.netty.recycler.maxSharedCapacityFactor: {}", MAX_SHARED_CAPACITY_FACTOR);                logger.debug("-Dio.netty.recycler.linkCapacity: {}", LINK_CAPACITY);                logger.debug("-Dio.netty.recycler.ratio: {}", RATIO);            }        }        INITIAL_CAPACITY = min(DEFAULT_MAX_CAPACITY_PER_THREAD, 256);    }    private final int maxCapacityPerThread;    private final int maxSharedCapacityFactor;    private final int ratioMask;    private final int maxDelayedQueuesPerThread;    private final FastThreadLocal<Stack<T>> threadLocal = new FastThreadLocal<Stack<T>>() {     //FastThreadLocal是线程本地变量, 所以每个线程都对应一个自己的Stack.        @Override        protected Stack<T> initialValue() {            return new Stack<T>(Recycler.this, Thread.currentThread(), maxCapacityPerThread, maxSharedCapacityFactor,                    ratioMask, maxDelayedQueuesPerThread);        }    };    protected Recycler() {        this(DEFAULT_MAX_CAPACITY_PER_THREAD);    }    protected Recycler(int maxCapacityPerThread) {        this(maxCapacityPerThread, MAX_SHARED_CAPACITY_FACTOR);    }    protected Recycler(int maxCapacityPerThread, int maxSharedCapacityFactor) {        this(maxCapacityPerThread, maxSharedCapacityFactor, RATIO, MAX_DELAYED_QUEUES_PER_THREAD);    }    protected Recycler(int maxCapacityPerThread, int maxSharedCapacityFactor,                       int ratio, int maxDelayedQueuesPerThread) {        ratioMask = safeFindNextPositivePowerOfTwo(ratio) - 1;  //根据ratio获取一个掩码,默认为8,那么ratioMask二进制就是 "111"        if (maxCapacityPerThread <= 0) {            this.maxCapacityPerThread = 0;            this.maxSharedCapacityFactor = 1;            this.maxDelayedQueuesPerThread = 0;        } else {            this.maxCapacityPerThread = maxCapacityPerThread;            this.maxSharedCapacityFactor = max(1, maxSharedCapacityFactor);            this.maxDelayedQueuesPerThread = max(0, maxDelayedQueuesPerThread);        }    }    @SuppressWarnings("unchecked")    public final T get() {        if (maxCapacityPerThread == 0) {        // 通过修改maxCapacityPerThread=0可以关闭回收功能, 默认值是32768            return newObject((Handle<T>) NOOP_HANDLE);        }        Stack<T> stack = threadLocal.get();     // 获取当前线程对应的Stack        DefaultHandle<T> handle = stack.pop();  // 从对象池获取对象        if (handle == null) {            handle = stack.newHandle();            handle.value = newObject(handle);   // 没有对象,则调用子类的newObject方法创建新的对象        }        return (T) handle.value;    }    /**     * @deprecated use {@link Handle#recycle(Object)}.  //旧的方法     */    @Deprecated    public final boolean recycle(T o, Handle<T> handle) {        if (handle == NOOP_HANDLE) {            return false;        }        DefaultHandle<T> h = (DefaultHandle<T>) handle;        if (h.stack.parent != this) {       // 旧的方法,如果不是当前线程的, 直接不回收了.            return false;        }        h.recycle(o);        return true;    }    final int threadLocalCapacity() {        return threadLocal.get().elements.length;    }    final int threadLocalSize() {        return threadLocal.get().size;    }    protected abstract T newObject(Handle<T> handle);    public interface Handle<T> {        void recycle(T object);    }    static final class DefaultHandle<T> implements Handle<T> {  // DefaultHandle就是就是Stack的包装对象,持有stack的引用,可以回收自己到stack中;        private int lastRecycledId; //标记最新一次回收的线程id        private int recycleId;      //也是一个标记,是用来回收前的校验的.        boolean hasBeenRecycled;    //标记是否已经被回收        private Stack<?> stack;     //持有stack的引用        private Object value;        DefaultHandle(Stack<?> stack) {            this.stack = stack;        }        @Override        public void recycle(Object object) {            if (object != value) {                throw new IllegalArgumentException("object does not belong to handle");            }            stack.push(this);   //可以回收自己到stack中        }    }    private static final FastThreadLocal<Map<Stack<?>, WeakOrderQueue>> DELAYED_RECYCLED =      // 这也是一个线程本地变量,每个线程都有自己的Map<Stack<?>, WeakOrderQueue>            new FastThreadLocal<Map<Stack<?>, WeakOrderQueue>>() {                              // 根据Stack可以获取到对应的WeakOrderQueue        @Override                                                                               // 需要注意的是这边两个对象都有弱引用,WeakReference! 具体下面解释.        protected Map<Stack<?>, WeakOrderQueue> initialValue() {            return new WeakHashMap<Stack<?>, WeakOrderQueue>();     // 使用WeakHashMap,保证对key也就是Stack是弱引用; 一旦Stack没有强引用了, 会被回收的,WeakHashMap不会无限占用内存;        }    };    // a queue that makes only moderate guarantees about visibility: items are seen in the correct order,    // but we aren't absolutely guaranteed to ever see anything at all, thereby keeping the queue cheap to maintain    private static final class WeakOrderQueue {        static final WeakOrderQueue DUMMY = new WeakOrderQueue();   //用于标记空的WeakOrderQueue,在达到WeakOrderQueue数量上限时放入一个这个,表示结束了.        // Let Link extend AtomicInteger for intrinsics. The Link itself will be used as writerIndex.   // Link对象本身会作为读索引.        @SuppressWarnings("serial")        private static final class Link extends AtomicInteger {     //这里为什么要继承一个AtomicInteger呢,因为这样Link就是一个线程安全的容器,保证了多线程安全和可见性.            private final DefaultHandle<?>[] elements = new DefaultHandle[LINK_CAPACITY];   //维护一个数组, 容量默认为16.            private int readIndex;      //读索引            private Link next;          //下一个索引. WeakOrderQueue有多个时, 之间遍历靠next指向下一个WeakOrderQueue.        }        // chain of data items        private Link head, tail;        //头指针和尾指针        // pointer to another queue of delayed items for the same stack        private WeakOrderQueue next;    //指向下一个WeakOrderQueue        private final WeakReference<Thread> owner;              // 拥有者,干嘛的?? 要注意到这是一个弱引用,就是不会影响Thread对象的GC的,如果thread为空,owner.get()会返回null        private final int id = ID_GENERATOR.getAndIncrement();  // WeakOrderQueue的唯一标记        private final AtomicInteger availableSharedCapacity;    // 允许的最大共享容量        private WeakOrderQueue() {      //用于初始化DUMMY,遇到DUMMY就知道要抛弃了.            owner = null;            availableSharedCapacity = null;        }        private WeakOrderQueue(Stack<?> stack, Thread thread) {     //在Stack的io.netty.util.Recycler.Stack.pushLater()中如果没有WeakOrderQueue,会调用这里new一个            head = tail = new Link();                   //初始化头和尾指针,指向这个新创建的Link            owner = new WeakReference<Thread>(thread);  //表示当前的WeakOrderQueue是被哪个线程拥有的. 因为只有不同线程去回收对象才会进到这个方法,所以thread不是这stack对应的线程                                                        //这里的WeakReference,对Thread是一个弱引用,所以Thread在没有强引用时就会被回收(线程也是可以回收的对象)            // Its important that we not store the Stack itself in the WeakOrderQueue as the Stack also is used in  //这里很重要,我们没有把Stack保存到WeakOrderQueue中            // the WeakHashMap as key. So just store the enclosed AtomicInteger which should allow to have the      //因为Stack是WeakHashMap的key            // Stack itself GCed.                                                                                   //我们只是持有head 和 tail的引用,就可以遍历WeakOrderQueue            availableSharedCapacity = stack.availableSharedCapacity;        }        static WeakOrderQueue newQueue(Stack<?> stack, Thread thread) { //stack.setHead(queue)必须在构造器外进行,防止对象溢出.(我查看作者的该动记录是为了修改以前的不安全发布的构造方法)            WeakOrderQueue queue = new WeakOrderQueue(stack, thread);            // Done outside of the constructor to ensure WeakOrderQueue.this does not escape the constructor and so            // may be accessed while its still constructed.            stack.setHead(queue);   //这个stack,头指针指向 这个新创建的WeakOrderQueue            return queue;        }        private void setNext(WeakOrderQueue next) {            assert next != this;            this.next = next;        }        /**         * Allocate a new {@link WeakOrderQueue} or return {@code null} if not possible.         */        static WeakOrderQueue allocate(Stack<?> stack, Thread thread) {            // We allocated a Link so reserve the space            return reserveSpace(stack.availableSharedCapacity, LINK_CAPACITY)   //先预约space容量                    ? WeakOrderQueue.newQueue(stack, thread) : null;            //预约成功, 对当前stack创建一个新的WeakOrderQueue        }        private static boolean reserveSpace(AtomicInteger availableSharedCapacity, int space) {     //容量不够就返回false; 够的话就减去space大小.            assert space >= 0;            for (;;) {                int available = availableSharedCapacity.get();                if (available < space) {    //如果剩余可用容量小于 LINK_CAPACITY,返回false                    return false;                }                if (availableSharedCapacity.compareAndSet(available, available - space)) {    //调用availableSharedCapacity线程安全的CAS方法                    return true;                }            }        }        private void reclaimSpace(int space) {          //availableSharedCapacity加上space,就是恢复前面减去的space大小            assert space >= 0;            availableSharedCapacity.addAndGet(space);   //availableSharedCapacity和上面的方法会存在并发,所以采用原子类型.        }        void add(DefaultHandle<?> handle) {            handle.lastRecycledId = id;     //更新最近一次回收的id, 注意这里只更新了lastRecycledId, recycleId没有更新, 等到真正回收的时候,会改成一致的.            Link tail = this.tail;            int writeIndex;            if ((writeIndex = tail.get()) == LINK_CAPACITY) {                if (!reserveSpace(availableSharedCapacity, LINK_CAPACITY)) {    //判断剩余空间是否足够                    // Drop it.                    return;                }                // We allocate a Link so reserve the space                this.tail = tail = tail.next = new Link();                writeIndex = tail.get();        //tail这是一个自增的变量,每次tail.get()就表示放到末尾了            }            tail.elements[writeIndex] = handle; //把对应的handle引用放到末尾的数组里            handle.stack = null;            // we lazy set to ensure that setting stack to null appears before we unnull it in the owning thread;            // this also means we guarantee visibility of an element in the queue if we see the index updated            tail.lazySet(writeIndex + 1);   //todo 这个方法JDK注释比较少,还没看懂.后面可以写个demo测试下.        }        boolean hasFinalData() {            return tail.readIndex != tail.get();    //readIndex指向当前读取的, tail.get()表示最大的值, 不相等代表还有待读取的数据.        }        // transfer as many items as we can from this queue to the stack, returning true if any were transferred        @SuppressWarnings("rawtypes")        boolean transfer(Stack<?> dst) {    //把WeakOrderQueue里面暂存的对象,传输到对应的stack,主动去回收对象.            Link head = this.head;            if (head == null) {                return false;            }            if (head.readIndex == LINK_CAPACITY) {                if (head.next == null) {                    return false;                }                this.head = head = head.next;            }            final int srcStart = head.readIndex;            int srcEnd = head.get();            final int srcSize = srcEnd - srcStart;            if (srcSize == 0) {                return false;            }            final int dstSize = dst.size;            final int expectedCapacity = dstSize + srcSize;            if (expectedCapacity > dst.elements.length) {                final int actualCapacity = dst.increaseCapacity(expectedCapacity);  //扩容                srcEnd = min(srcStart + actualCapacity - dstSize, srcEnd);            }            if (srcStart != srcEnd) {                final DefaultHandle[] srcElems = head.elements;                final DefaultHandle[] dstElems = dst.elements;                int newDstSize = dstSize;                for (int i = srcStart; i < srcEnd; i++) {                    DefaultHandle element = srcElems[i];                    if (element.recycleId == 0) {                        element.recycleId = element.lastRecycledId;     //前面的add方法只更新了lastRecycledId, transfer执行好了,需要更新recycleId一致,表示回收成功.                    } else if (element.recycleId != element.lastRecycledId) {   //recycleId=0才表示可回收的                        throw new IllegalStateException("recycled already");                    }                    srcElems[i] = null;             //成功了,就把WeakOrderQueue数组里置为空,释放对对象的引用                    if (dst.dropHandle(element)) {  //判断是否回收                        // Drop the object.                        continue;                    }                    element.stack = dst;                //element是Link数组里的对象,stack指向目标stack                    dstElems[newDstSize ++] = element;  //目标Stack数组的尾部, 放入element                }                if (srcEnd == LINK_CAPACITY && head.next != null) {     //如果head.next还有,就需要继续扩容                    // Add capacity back as the Link is GCed.                    reclaimSpace(LINK_CAPACITY);    //扩容                    this.head = head.next;          //指向下一个,等待下一次循环继续上面的操作.transfer方法外层是被循环调用的.                }                head.readIndex = srcEnd;            //下次从这里开始读                if (dst.size == newDstSize) {       //如果相等则表示没有剩余空间了,返回false                    return false;                }                dst.size = newDstSize;              //目标数组size修改                return true;            } else {                // The destination stack is full already.   // 目标仍然是满的,直接返回false,就不做回收动作                return false;            }        }        @Override        protected void finalize() throws Throwable {    //WeakOrderQueue对象GC前调用这个方法            try {                super.finalize();   //回收对象            } finally {                // We need to reclaim all space that was reserved by this WeakOrderQueue so we not run out of space in                // the stack. This is needed as we not have a good life-time control over the queue as it is used in a  //需要这个方法是因为这个被用在WeakHashMap中,会随时GC它                // WeakHashMap which will drop it at any time.                Link link = head;                while (link != null) {  //遍历WeakHashMap中所有的Link,直到link = null这样里面的Link对象没有引用了,都会被回收.                    reclaimSpace(LINK_CAPACITY);                    link = link.next;                }            }        }    }    static final class Stack<T> {        // we keep a queue of per-thread queues, which is appended to once only, each time a new thread other        // than the stack owner recycles: when we run out of items in our stack we iterate this collection        // to scavenge those that can be reused. this permits us to incur minimal thread synchronisation whilst     //使用最少的同步操作,并且可以全部回收.        // still recycling all items.        final Recycler<T> parent;        final Thread thread;                            //持有线程的强引用, 如果Stack没有被回收,那么Thread也不能被回收了,但是Stack没有强引用,在map中是弱引用,前面提到的.关于引用的知识回头再细化下.        final AtomicInteger availableSharedCapacity;    //容量,用一个AtomicInteger表示,是为了可以并发CAS修改;        final int maxDelayedQueues;        private final int maxCapacity;        private final int ratioMask;        private DefaultHandle<?>[] elements;        private int size;        private int handleRecycleCount = -1;    // Start with -1 so the first one will be recycled.        private WeakOrderQueue cursor, prev;    // 指向当前的WeakOrderQueue 和 前一个        private volatile WeakOrderQueue head;        Stack(Recycler<T> parent, Thread thread, int maxCapacity, int maxSharedCapacityFactor,              int ratioMask, int maxDelayedQueues) {            this.parent = parent;            this.thread = thread;            this.maxCapacity = maxCapacity;            availableSharedCapacity = new AtomicInteger(max(maxCapacity / maxSharedCapacityFactor, LINK_CAPACITY)); //maxSharedCapacityFactor默认为2            elements = new DefaultHandle[min(INITIAL_CAPACITY, maxCapacity)];   //取初始值和maxCapacity较小的一个; 如果INITIAL_CAPACITY < maxCapacity后面可以动态扩容            this.ratioMask = ratioMask;            this.maxDelayedQueues = maxDelayedQueues;        }        // Marked as synchronized to ensure this is serialized. //标记为同步,保证两个操作顺序执行        synchronized void setHead(WeakOrderQueue queue) {   // 重要的一点就是这个方法是 synchronized 的, 这个类里面唯一的synchronized方法            queue.setNext(head);                            // synchronized避免并发修改queue.setNext的情况.            head = queue;        }        int increaseCapacity(int expectedCapacity) {            int newCapacity = elements.length;            int maxCapacity = this.maxCapacity;            do {                newCapacity <<= 1;  //每次扩容两倍,直到newCapacity大于expectedCapacity            } while (newCapacity < expectedCapacity && newCapacity < maxCapacity);            newCapacity = min(newCapacity, maxCapacity);            if (newCapacity != elements.length) {                elements = Arrays.copyOf(elements, newCapacity);            }            return newCapacity;        }        @SuppressWarnings({ "unchecked", "rawtypes" })        DefaultHandle<T> pop() {            int size = this.size;            if (size == 0) {                if (!scavenge()) {                    return null;                }                size = this.size;            }            size --;            DefaultHandle ret = elements[size];            elements[size] = null;            if (ret.lastRecycledId != ret.recycleId) {  //这两个应该相等                throw new IllegalStateException("recycled multiple times");            }            ret.recycleId = 0;          //获取出的对象,置为0表示没有被回收            ret.lastRecycledId = 0;     //获取出的对象,置为0表示没有被回收            this.size = size;            return ret;        }        boolean scavenge() {            // continue an existing scavenge, if any            if (scavengeSome()) {                return true;            }            // reset our scavenge cursor            prev = null;            cursor = head;            return false;        }        boolean scavengeSome() {    //尝试回收            WeakOrderQueue prev;            WeakOrderQueue cursor = this.cursor;    //指向当前的指针            if (cursor == null) {                   //当前为null,就指向head,head也为null就跳出返回false                prev = null;                cursor = head;                if (cursor == null) {                    return false;                }            } else {                prev = this.prev;            }            boolean success = false;            do {                if (cursor.transfer(this)) {                    success = true;                    break;                }                WeakOrderQueue next = cursor.next;                if (cursor.owner.get() == null) {   //线程被回收了                    // If the thread associated with the queue is gone, unlink it, after                //cursor.owner.get() == null表示,WeakOrderQueue的归属线程被回收了.                    // performing a volatile read to confirm there is no data left to collect.          //这里读取的是线程安全的变量,确认没有数据可回收了                    // We never unlink the first queue, as we don't want to synchronize on updating the head.   //第一个queue永远不回收,因为更新head指针会存在并发.                    if (cursor.hasFinalData()) {                        for (;;) {                            if (cursor.transfer(this)) {                                success = true;                            } else {                                break;  //cursor.transfer(this)返回false,代表没有读取的数据了                            }                        }                    }                    if (prev != null) {                        prev.setNext(next);     //这是一个单向链表,只要改变prev的引用,老的节点会被回收的.                    }                } else {                    prev = cursor;                }                cursor = next;            } while (cursor != null && !success);            this.prev = prev;            this.cursor = cursor;            return success;        }        void push(DefaultHandle<?> item) {  //会综合判断,如果是当前线程,直接放进数组中,如果不是,就先报错到WeakOrderQueue中.            Thread currentThread = Thread.currentThread();            if (thread == currentThread) {                // The current Thread is the thread that belongs to the Stack, we can try to push the object now.                pushNow(item);            } else {                // The current Thread is not the one that belongs to the Stack, we need to signal that the push     //保存到WeakOrderQueue,等待回收.                // happens later.                pushLater(item, currentThread);            }        }        private void pushNow(DefaultHandle<?> item) {               // 立即push,把item对象回收到elements数组中            if ((item.recycleId | item.lastRecycledId) != 0) {      // 如果没回收,recycleId和lastRecycledId应该都是0; 正常应该不会进来, 感觉应该是作者为了在开发中排除这种情况.                throw new IllegalStateException("recycled already");            }            item.recycleId = item.lastRecycledId = OWN_THREAD_ID;   //都更新为OWN_THREAD_ID,表示被回收过了            int size = this.size;            if (size >= maxCapacity || dropHandle(item)) {          //如果size >= maxCapacity, 就会执行dropHandle()                // Hit the maximum capacity or should drop - drop the possibly youngest object.                return;                                             //dropHandle()返回true,就直接return掉,本次不做回收.            }            if (size == elements.length) {                          //如果size == elements.length,就要对elements数组进行扩容,每次扩容2倍,最大到maxCapacity                elements = Arrays.copyOf(elements, min(size << 1, maxCapacity));            }            elements[size] = item;      //这里要注意: elements.length是数组的长度,包括空位; size是数组中有内容的长度, 这里是在最末尾放item;            this.size = size + 1;       //size+1        }        private void pushLater(DefaultHandle<?> item, Thread thread) {  // 想想为什么需要pushLater?            // we don't want to have a ref to the queue as the value in our weak map            // so we null it out; to ensure there are no races with restoring it later  //为了在回收的过程中没有并发,如果回收的不是当前线程的Stack的对象,            // we impose a memory ordering here (no-op on x86)                          //就放入到它的WeakOrderQueue,等它自己拿的时候回收,这样recycle方法就没有并发了;这种思想在Doug lea的AQS里也有.            Map<Stack<?>, WeakOrderQueue> delayedRecycled = DELAYED_RECYCLED.get();     //获取当前线程对应的Map<Stack<?>, WeakOrderQueue>            WeakOrderQueue queue = delayedRecycled.get(this);                           //根据this Stack获取 WeakOrderQueue            if (queue == null) {                                        //如果queue就需要创建一个                if (delayedRecycled.size() >= maxDelayedQueues) {       //大于上限,就放入一个DUMMY,表示满了                    // Add a dummy queue so we know we should drop the object                    delayedRecycled.put(this, WeakOrderQueue.DUMMY);                    return;                }                // Check if we already reached the maximum number of delayed queues and if we can allocate at all.                if ((queue = WeakOrderQueue.allocate(this, thread)) == null) {      //WeakOrderQueue.allocate方法,针对需要回收的这个Stack,创建一个新的WeakOrderQueue                    // drop object                    return;                }                delayedRecycled.put(this, queue);            } else if (queue == WeakOrderQueue.DUMMY) {                // drop object                return;            }            queue.add(item);        }        boolean dropHandle(DefaultHandle<?> handle) {            if (!handle.hasBeenRecycled) {                      //判断是否已经回收                if ((++handleRecycleCount & ratioMask) != 0) {  //handleRecycleCount初始为-1, ++handleRecycleCount = 0, 所以第一次肯定会进去.位运算的性能很好.                    // Drop the object.                         //ratioMask是一个掩码,解释见下方                     return true;                }                handle.hasBeenRecycled = true;            }            return false;        }        DefaultHandle<T> newHandle() {            return new DefaultHandle<T>(this);        }    }}

注:

dropHandle方法里有用到一个掩码ratioMask, 这个必须是2的次方-1,
如果按默认值7 (“111”) , 只要低三位不全0, 就会返回true本次忽略不做回收. 所以返回true概率是 7/8, 目的是为了让回收动作缓慢一些, 内存池慢慢的增加, 减少对系统的压力. 不得不说作者考虑的真仔细.

110111001011101111000 <--100110101011110011011110111110000 <--

5. 下面写个Demo,看下效果

package comm;import com.github.ltsopensource.core.support.SystemClock;import io.netty.util.Recycler;import org.junit.Test;import java.io.IOException;import java.util.ArrayList;import java.util.List;import java.util.concurrent.CountDownLatch;public class RecyclerTest {    static class WrapRecycler {        private List<String> list;        private final static Recycler<WrapRecycler> RECYCLER = new Recycler<WrapRecycler>() {            @Override            protected WrapRecycler newObject(Handle<WrapRecycler> handle) {                return new WrapRecycler(handle);            }        };        Recycler.Handle<WrapRecycler> handle;        WrapRecycler(Recycler.Handle<WrapRecycler> handle) {            this.handle = handle;            this.list = new ArrayList<>(1000);        }        List<String> getList() {            return list;        }        static WrapRecycler getInstance() {            return RECYCLER.get();        }        void recycle() {            handle.recycle(this);        }    }    @Test    public void testDifferentThreadRecycle() throws InterruptedException, IOException {        System.out.println("Main thread started ...");        final WrapRecycler instance = WrapRecycler.getInstance();        instance.getList().add("111");      // main 线程放入一个字符串        final CountDownLatch countDownLatch = new CountDownLatch(1);        new Thread(new Runnable() {         // 这里新创建一个线程,在新的线程中可以回收main线程中的对象.            @Override            public void run() {                System.out.println("Sub thread started ...");                List<String> list = instance.getList();                list.add("222");            // 子线程放入一个字符串.                instance.recycle();         // 对main线程从对象池中回去的对象家进行回收动作.                System.out.println("Sub Thread get list : " + WrapRecycler.getInstance().getList());    // 在子线程中从对象池获取对象                countDownLatch.countDown();            }        }).start();        countDownLatch.await();        System.out.println("Main Thread get list : " + WrapRecycler.getInstance().getList());           // 在主线程中从对象池获取对象        System.in.read();    }}

执行结果:

  可以看到执行结果, 子线程可以回收主线程从主线程对象池中的对象, 但是只是回收到主线程对应的对象池里了, 各个线程对应的对象池时独立的.

Main thread started ...Sub thread started ...Sub Thread get list : []Main Thread get list : [111, 222]

  进而可以写两个demo,比较下使用对象池和依赖JVM垃圾回收的执行效率.
  我本地测试下来, 发现同样都是在堆内存下, 如果创建的都是很小的对象, 使用netty的这个对象池没有什么优势, 但是如果创建的是比较复杂比较大的对象, 使用对象池执行时间只有前者的七分之一. 理论上, 对象垃圾回收的成本越高, 这个对象池的效果就会越明显的, 特别是在Netty的非堆内存场景下, 垃圾回收的成本会更高.
  大家如果在代码里要使用的话, 可以针对自己的场景进行测试下.

6. 思考

  1. 在学习一些优秀的开源软件代码时, 我们不一定就要自己再写一套中间件, 但是其中的某些优点和思路在平时的开发中是值得借鉴的, 比如在做相关的网络编程时, 如果对netty的实现有一定的了解, 就能把一些好的设计思路用起来.
  2. 这个类的主要作者就是netty的一位核心开发人员: normanmaurer, 现在就职于苹果. 在研究这个类时, 由于注释很少, 代码晦涩难懂. 我在学习这个类时, 翻看了netty的各个版本, 从github的提交记录可以看到这个类最早创建于2013-5-28日, 其实在netty3.x的版本中是没有这个类的, 从4.x开始的版本中增加了这个类, 用于提升netty的性能. 从2013年到2017年, 这个类从无到有, 从简单到复杂, 一直在持续优化中. 在研究代码的过程中,我通过对比github上的历史代码, 看起来就相对好理解一些了, 一些复杂的实现其实不是刚开始就这么复杂的, 都是每次一点点的增强.
  3. 前面学习JDK的源码,也发现了这样规律, 比如很多concurrent包中的类从1.5就有了,但是后续的jdk版本中都在持续优化, 代码会变的比较复杂, 我在先看了JDK1.5之后, 再看1.6和1.7,就能明白一些地方作者的用意了.
  4. 一个功能点想出来就是一个好的开始, 实现出来然后需要在后续的实际应用中不断的优化和增强, 代码开发永远不是一蹴而就的, 不一定非要一次就把所有的点都想全, 好的实现可以从一个简单的想法开始.