林轩田-机器学习基石-作业3-python源码

来源:互联网 发布:英语会被取代知乎 编辑:程序博客网 时间:2024/06/10 21:00
大家好,以下是林轩田机器学习基石--作业3的Python的参考代码,自己码的。Python方面没有工程经验,如有错误或者更好的代码优化方法,麻烦大家留言提醒一下下,大家互相交流学习,谢谢。

13-15题主要考察在分类问题上的线性回归和特征转换,所使用的样本点均由目标函数
f(x1; x2) = sign(x1^2 + x2^2 − 0.6)
产生

13.1:在使用线性回归且不进行参数转换的情况下(也就是直接使用特征向量(1; x1; x2)),对数据进行拟合。进行1000次试验,并且画出1000次试验的Ein的直方图,并求出Ein的平均值。

### For Questions 13-15, Generate a training set of N = 1000 points on X = [−1; 1] × [−1; 1] with uniform probability of### picking each x 2 X. Generate simulated noise by flipping the sign of the output in a random 10% subset### of the generated training set.import randomimport numpy as npimport matplotlib.pyplot as plt### target function f(x1, x2) = sign(x1^2 + x2^2 - 0.6)def target_function(x1, x2):    return (1 if (x1*x1 + x2*x2 - 0.6) >= 0 else -1)### plot dot picture, two dimension featuresdef plot_dot_picture(features, lables, w=np.zeros((3, 1))):    x1 = features[:,1]    x2 = features[:,2]    y = lables[:,0]    plot_size = 20    size = np.ones((len(x1)))*plot_size    size_x1 = np.ma.masked_where(y<0, size)    size_x2 = np.ma.masked_where(y>0, size)    ### plot scatter    plt.scatter(x1, x2, s=size_x1, marker='x', c='r')    plt.scatter(x1, x2, s=size_x2, marker='o', c='b')    ### plot w line    x1_tmp = np.arange(-1,1,0.01)    x2_tmp = np.arange(-1,1,0.01)    x1_tmp, x2_tmp = np.meshgrid(x1_tmp, x2_tmp)    f = x1_tmp*w[1, 0] + x2_tmp*w[2, 0] + w[0, 0]    try:        plt.contour(x1_tmp, x2_tmp, f, 0)    except ValueError:        pass    plt.xlabel('X1')    plt.ylabel('X2')    plt.title('Feature scatter plot')    plt.legend()    plt.show()### return a numpy arraydef training_data_with_random_error(num=1000):    features = np.zeros((num, 3))    labels = np.zeros((num, 1))    points_x1 = np.array([round(random.uniform(-1, 1) ,2) for _ in range(num)])    points_x2 = np.array([round(random.uniform(-1, 1) ,2) for _ in range(num)])    for i in range(num):        features[i, 0] = 1        features[i, 1] = points_x1[i]        features[i, 2] = points_x2[i]        labels[i] = target_function(points_x1[i], points_x2[i])        ### choose 10 error labels        if i <= num*0.1:            labels[i] = (1 if labels[i]<0 else -1)    return features, labelsdef error_rate(features, labels, w):    wrong = 0    for i in range(len(labels)):        if np.dot(features[i], w)*labels[i,0] < 0:            wrong += 1    return wrong/(len(labels)*1.0)(features,labels) = training_data_with_random_error(1000)plot_dot_picture(features, labels)

因为特征是二维的,很容易用图片表述。从图上可以看出,点的分布和目标方程大致一致。
这里写图片描述

### 13.1 (*) Carry out Linear Regression without transformation, i.e., with feature vector:### (1; x1; x2);### to find wlin, and use wlin directly for classification. Run the experiments for 1000 times and plot### a histogram on the classification (0/1) in-sample error (Ein). What is the average Ein over 1000### experiments?"""    linear regression:    model     : g(x) = Wt * X    strategy  : squared error    algorithm : close form(matrix)    result    : w = (Xt.X)^-1.Xt.Y"""def linear_regression_closed_form(X, Y):    return np.linalg.inv(np.dot(X.T, X)).dot(X.T).dot(Y)w = linear_regression_closed_form(features, labels)"""    plot the one result(just for visual)"""plot_dot_picture(features, labels, w)"""    run 1000 times, and plot histogram"""error_rate_array = []for i in range(1000):    (features,labels) = training_data_with_random_error(1000)    w = linear_regression_closed_form(features, labels)    error_rate_array.append(error_rate(features, labels, w))bins = np.arange(0,1,0.05)plt.hist(error_rate_array, bins, rwidth=0.8, histtype='bar')plt.title("Error rate histogram(without feature transform)")plt.show()### error rate, approximately 0.5avr_err = sum(error_rate_array)/(len(error_rate_array)*1.0)print "13.1--Linear regression for classification without feature transform:Average error--",avr_err

下面这张图片是执行1次试验学习到的直线,可见效果很糟糕

这里写图片描述

下面这张直方图描述的是执行1000次的Ein的直方图,Ein大概为0.5左右,可以说没什么学习效果。证明我们选择的一次模型不能够满足该数据集。

这里写图片描述

13.1--Linear regression for classification without feature transform:Average error-- 0.50587
### Now, transform the training data into the following nonlinear feature vector:### (1; x1; x2; x1x2; x1^2; x2^2)### Find the vector ~w that corresponds to the solution of Linear Regression, and take it for classification."""    feature transform φ(x) = z = (1; x1; x2; x1x2; x1^2; x2^2)"""def feature_transform(features):    new = np.zeros((len(features), 6))    new[:, 0:3] = features[:,:]*1    new[:, 3] = features[:, 1] * features[:, 2]    new[:, 4] = features[:, 1] * features[:, 1]    new[:, 5] = features[:, 2] * features[:, 2]    return newdef plot_dot_pictures(features, lables, w=np.zeros((6, 1))):    x1 = features[:,1]    x2 = features[:,2]    y = lables[:,0]    plot_size = 20    size = np.ones((len(x1)))*plot_size    size_x1 = np.ma.masked_where(y<0, size)    size_x2 = np.ma.masked_where(y>0, size)    ### plot scatter    plt.scatter(x1, x2, s=size_x1, marker='x', c='r')    plt.scatter(x1, x2, s=size_x2, marker='o', c='b')    ### plot w line    x1_tmp = np.arange(-1,1,0.01)    x2_tmp = np.arange(-1,1,0.01)    x1_tmp, x2_tmp = np.meshgrid(x1_tmp, x2_tmp)    f = w[0, 0] + x1_tmp*w[1, 0] + x2_tmp*w[2, 0] + x1_tmp*x2_tmp*w[3, 0] \        + x1_tmp*x1_tmp*w[4, 0] + x2_tmp*x2_tmp*w[5, 0]    try:        plt.contour(x1_tmp, x2_tmp, f, 0)    except ValueError:        pass    plt.xlabel('X1')    plt.ylabel('X2')    plt.title('Feature scatter plot')    plt.legend()    plt.show()"""    plot the one result(just for visual)"""(features,labels) = training_data_with_random_error(1000)new_features = feature_transform(features)w = linear_regression_closed_form(new_features, labels)plot_dot_pictures(features, labels, w)"""    run 1000 times, and plot histogram"""error_rate_array = []for i in range(1000):    (features,labels) = training_data_with_random_error(1000)    new_features = feature_transform(features)    w = linear_regression_closed_form(new_features, labels)    error_rate_array.append(error_rate(new_features, labels, w))bins = np.arange(0,1,0.05)plt.hist(error_rate_array, bins, rwidth=0.8, histtype='bar')plt.title("Error rate histogram(with feature transform)")plt.show()### error rate, approximately 0.5avr_err = sum(error_rate_array)/(len(error_rate_array)*1.0)print "13.2--Linear regression for classification with feature transform:Average error--",avr_err

所以在13题后面,我们使用二次的假设,并使用使用了特征转换,将非线性问题转换为线性问题,以便于使用线性回归。从图中看出来,我们学习的效果很不错,错误率在12%左右(数据集里面本身有10%的噪声点)

这里写图片描述

这里写图片描述

13.2--Linear regression for classification with feature transform:Average error-- 0.124849

所以说线性回归总是适合分类分类问题吗?下面做了一个小实验。有意地挑选了六个样本点,分别在[1,1]附近和[-1, -1]附近。

### is linear regression always good for classification, see the following examplefeatures = np.array([[1, 1.1, 1.2], [1, 1.2,1.0], [1, 1.0, 1.0], [1, -1.1, -1.2], [1, -1.2, -1.0], [1, -1.0, -1.0]])labels = np.array([[1],[1],[1],[-1],[-1],[-1]])w = linear_regression_closed_form(features, labels)"""    plot the one result(just for visual)"""plot_dot_picture(features, labels, w)

使用线性回归,得到如图的一条直线(其实该结果出乎了我的意料,我还以为会生成一条类似y=x的直线呢)。
这里写图片描述

### if add a new large x point, what happens?features = np.array([[1, 100, 100], [1, 1.1, 1.2], [1, 1.2,1.0], [1, 1.0, 1.0], [1, -1.1, -1.2], [1, -1.2, -1.0], [1, -1.0, -1.0]])labels = np.array([[1], [1],[1],[1],[-1],[-1],[-1]])w = linear_regression_closed_form(features, labels)"""    plot the one result(just for visual)"""print wplot_dot_picture(features, labels, w)print np.dot(features, w)### total 7 points, 2 points error!!!!!

现在加入一个[100, 100]的样本点,加入这个点是很合理的,可见生成了一条类似Y=X的直线,但是居然有2个点分类错误(本来有图的。。)。但如果该问题用binary classification或者其他的分类器,均可以很好的工作。所以现行回归并不是总是适合分类问题的。

### 14. (*) Run the experiment for 1000 times, and plot a histogram on ~ w3, the weight associated with### x1x2. What is the average ~ w3?"""    run 1000 times, and plot histogram"""w3_array = []for i in range(1000):    (features,labels) = training_data_with_random_error(1000)    new_features = feature_transform(features)    w = linear_regression_closed_form(new_features, labels)    w3_array.append(w[3,0])bins = np.arange(-2,2,0.05)plt.hist(w3_array, bins, rwidth=0.8, histtype='bar')plt.title("Parameters W3(with feature transform)")plt.show()print "Average of W3 is: ", sum(w3_array)/(len(w3_array)*1.0)

这里写图片描述

Average of W3 is:  0.00120328875641
### 15. (*) Continue from Question 14, and plot a histogram on the classification Eout instead. You can### estimate it by generating a new set of 1000 points and adding noise as before. What is the average### Eout?error_out = []for i in range(1000):    (features,labels) = training_data_with_random_error(1000)    new_features = feature_transform(features)    error_out.append(error_rate(new_features,labels, w))bins = np.arange(-1,1,0.05)plt.hist(error_out, bins, rwidth=0.8, histtype='bar')plt.title("Error out(with feature transform)")plt.show()print "Average of Eout is: ", sum(error_out)/(len(error_out)*1.0)

这里写图片描述

Average of Eout is:  0.133649
### 18. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression, initialized with 0. Run the algorithm with η = 0:001 and T = 2000 on the following set for training:###                http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat### and the following set for testing:###                http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat### What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using### the 0=1 error on the test set?import mathimport numpy as np"""Read data from data file"""def data_load(file_path):    ### open file and read lines    f = open(file_path)    try:        lines = f.readlines()    finally:        f.close()    ### create features and lables array    example_num = len(lines)    feature_dimension = len(lines[0].strip().split())  ###i do not know how to calculate the dimension      features = np.zeros((example_num, feature_dimension))    features[:,0] = 1    labels = np.zeros((example_num, 1))    for index,line in enumerate(lines):        ### items[0:-1]--features   items[-1]--label        items = line.strip().split(' ')        ### get features        features[index,1:] = [float(str_num) for str_num in items[0:-1]]        ### get label        labels[index] = float(items[-1])    return features,labels### gradient descentdef gradient_descent(X, Y, w):    ### -YnWtXn    tmp = -Y*(np.dot(X, w))    ### θ(-YnWtXn) = exp(tmp)/1+exp(tmp)    ### weight_matrix = np.array([math.exp(_)/(1+math.exp(_)) for _ in tmp]).reshape(len(X), 1)    weight_matrix = np.exp(tmp)/((1+np.exp(tmp))*1.0)    gradient = 1/(len(X)*1.0)*(sum(weight_matrix*-Y*X).reshape(len(w), 1))    return gradient### gradient descentdef stochastic_gradient_descent(X, Y, w):    ### -YnWtXn    tmp = -Y*(np.dot(X, w))    ### θ(-YnWtXn) = exp(tmp)/1+exp(tmp)    ###weight = math.exp(tmp[0])/((1+math.exp(tmp[0]))*1.0)    weight = np.exp(tmp)/((1+np.exp(tmp))*1.0)    gradient = weight*-Y*X    return gradient.reshape(len(gradient), 1)### LinearRegression Class,first time use Class, HaHa...class LinearRegression:    'Linear Regression of My'    def __init__(self):        pass    ### fit model    def fit(self, X, Y, Eta=0.001, max_interate=2000, sgd=False):        ### ∂E/∂w = 1/N * ∑θ(-YnWtXn)(-YnXn)        self.__w = np.zeros((len(X[0]),1))        if sgd == False:            for i in range(max_interate):                self.__w = self.__w - Eta*gradient_descent(X, Y, self.__w)        else:            index = 0            for i in range(max_interate):                if (index >= len(X)):                    index = 0                self.__w = self.__w - Eta*stochastic_gradient_descent(np.array(X[index]), Y[index], self.__w)                index += 1    ### predict    def predict(self, X):        binary_result = np.dot(X, self.__w) >= 0        return np.array([(1 if _ > 0 else -1) for _ in binary_result]).reshape(len(X), 1)     ### get vector w    def get_w(self):        return self.__w    ### score(error rate)    def score(self, X, Y):        predict_Y = self.predict(X)        return sum(predict_Y != Y)/(len(Y)*1.0)### training model(X, Y) = data_load("hw3_train.dat")lr = LinearRegression()lr.fit(X, Y, max_interate = 2000)### get weight vectorprint "weight vector: ", lr.get_w()### get 0/1 error in test datatest_X, test_Y = data_load("hw3_test.dat")###print "Eout: ", lr.score(test_X,test_Y)     lr.score(test_X,test_Y)
weight vector:  [[ 0.01878417] [-0.01260595] [ 0.04084862] [-0.03266317] [ 0.01502334] [-0.03667437] [ 0.01255934] [ 0.04815065] [-0.02206419] [ 0.02479605] [ 0.06899284] [ 0.0193719 ] [-0.01988549] [-0.0087049 ] [ 0.04605863] [ 0.05793382] [ 0.061218  ] [-0.04720391] [ 0.06070375] [-0.01610907] [-0.03484607]]array([ 0.475])
### 19. (*) Implement the fixed learning rate gradient descent algorithm below for logistic regression,### initialized with 0. Run the algorithm with η = 0:01 and T = 2000 on the following set for training:###                http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat### and the following set for testing:###                http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat### What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using### the 0=1 error on the test set?### training model(X, Y) = data_load("hw3_train.dat")lr_eta = LinearRegression()lr_eta.fit(X, Y, 0.01, 2000)### get weight vectorprint "weight vector: ", lr_eta.get_w()### get 0/1 error in test datatest_X, test_Y = data_load("hw3_test.dat")print "Eout: ", lr_eta.score(test_X,test_Y)     
weight vector:  [[-0.00385379] [-0.18914564] [ 0.26625908] [-0.35356593] [ 0.04088776] [-0.3794296 ] [ 0.01982783] [ 0.33391527] [-0.26386754] [ 0.13489328] [ 0.4914191 ] [ 0.08726107] [-0.25537728] [-0.16291797] [ 0.30073678] [ 0.40014954] [ 0.43218808] [-0.46227968] [ 0.43230193] [-0.20786372] [-0.36936337]]Eout:  [ 0.22]
### 20. (*) Implement the fixed learning rate stochastic gradient descent algorithm below for logistic regression,### initialized with 0. Instead of randomly choosing n in each iteration, please simply pick### the example with the cyclic order n = 1; 2; : : : ; N; 1; 2; : : :. Run the algorithm with η = 0:001 and### T = 2000 on the following set for training:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_train.dat### and the following set for testing:### http://www.csie.ntu.edu.tw/~htlin/course/ml15fall/hw3/hw3_test.dat### What is the weight vector within your g? What is the Eout(g) from your algorithm, evaluated using### the 0=1 error on the test set?### training model(X, Y) = data_load("hw3_train.dat")lr_sgd = LinearRegression()lr_sgd.fit(X, Y, sgd=True, max_interate = 2000)### get weight vectorprint "weight vector: ", lr_sgd.get_w()### get 0/1 error in test datatest_X, test_Y = data_load("hw3_test.dat")print "Eout: ", lr_sgd.score(test_X,test_Y)     
weight vector:  [[ 0.01826899] [-0.01308051] [ 0.04072894] [-0.03295698] [ 0.01498363] [-0.03691042] [ 0.01232819] [ 0.04791334] [-0.02244958] [ 0.02470544] [ 0.06878235] [ 0.01897378] [-0.02032107] [-0.00901469] [ 0.04589259] [ 0.05776824] [ 0.06102487] [-0.04756147] [ 0.06035018] [-0.01660574] [-0.03509342]]Eout:  [ 0.473]
阅读全文
0 0
原创粉丝点击