Java细粒度锁实现的3种方式

来源:互联网 发布:sql select 不重复 编辑:程序博客网 时间:2024/05/17 01:25

1. 分段锁

借鉴concurrentHashMap的分段思想,先生成一定数量的锁,具体使用的时候再根据key来返回对应的lock。这是几个实现里最简单,性能最高,也是最终被采用的锁策略,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
 * 分段锁,系统提供一定数量的原始锁,根据传入对象的哈希值获取对应的锁并加锁
 * 注意:要锁的对象的哈希值如果发生改变,有可能导致锁无法成功释放!!!
 */
publicclassSegmentLock<T> {
    privateInteger segments = 16;//默认分段数量
    privatefinalHashMap<Integer, ReentrantLock> lockMap = newHashMap<>();
 
    publicSegmentLock() {
        init(null,false);
    }
 
    publicSegmentLock(Integer counts, booleanfair) {
        init(counts, fair);
    }
 
    privatevoidinit(Integer counts, booleanfair) {
        if(counts != null) {
            segments = counts;
        }
        for(inti = 0; i < segments; i++) {
            lockMap.put(i,newReentrantLock(fair));
        }
    }
 
    publicvoidlock(T key) {
        ReentrantLock lock = lockMap.get(key.hashCode() % segments);
        lock.lock();
    }
 
    publicvoidunlock(T key) {
        ReentrantLock lock = lockMap.get(key.hashCode() % segments);
        lock.unlock();
    }
}

2. 哈希锁

上述分段锁的基础上发展起来的第二种锁策略,目的是实现真正意义上的细粒度锁。每个哈希值不同的对象都能获得自己独立的锁。在测试中,在被锁住的代码执行速度飞快的情况下,效率比分段锁慢 30% 左右。如果有长耗时操作,感觉表现应该会更好。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
publicclassHashLock<T> {
    privatebooleanisFair = false;
    privatefinalSegmentLock<T> segmentLock = newSegmentLock<>();//分段锁
    privatefinalConcurrentHashMap<T, LockInfo> lockMap = newConcurrentHashMap<>();
 
    publicHashLock() {
    }
 
    publicHashLock(booleanfair) {
        isFair = fair;
    }
 
    publicvoidlock(T key) {
        LockInfo lockInfo;
        segmentLock.lock(key);
        try{
            lockInfo = lockMap.get(key);
            if(lockInfo == null) {
                lockInfo = newLockInfo(isFair);
                lockMap.put(key, lockInfo);
            }else{
                lockInfo.count.incrementAndGet();
            }
        }finally{
            segmentLock.unlock(key);
        }
        lockInfo.lock.lock();
    }
 
    publicvoidunlock(T key) {
        LockInfo lockInfo = lockMap.get(key);
        if(lockInfo.count.get() == 1) {
            segmentLock.lock(key);
            try{
                if(lockInfo.count.get() == 1) {
                    lockMap.remove(key);
                }
            }finally{
                segmentLock.unlock(key);
            }
        }
        lockInfo.count.decrementAndGet();
        lockInfo.unlock();
    }
 
    privatestaticclass LockInfo {
        publicReentrantLock lock;
        publicAtomicInteger count = newAtomicInteger(1);
 
        privateLockInfo(booleanfair) {
            this.lock = newReentrantLock(fair);
        }
 
        publicvoidlock() {
            this.lock.lock();
        }
 
        publicvoidunlock() {
            this.lock.unlock();
        }
    }
}

3. 弱引用锁

哈希锁因为引入的分段锁来保证锁创建和销毁的同步,总感觉有点瑕疵,所以写了第三个锁来寻求更好的性能和更细粒度的锁。这个锁的思想是借助java的弱引用来创建锁,把锁的销毁交给jvm的垃圾回收,来避免额外的消耗。

有点遗憾的是因为使用了ConcurrentHashMap作为锁的容器,所以没能真正意义上的摆脱分段锁。这个锁的性能比 HashLock 快10% 左右。锁代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
 * 弱引用锁,为每个独立的哈希值提供独立的锁功能
 */
publicclassWeakHashLock<T> {
    privateConcurrentHashMap<T, WeakLockRef<T, ReentrantLock>> lockMap = newConcurrentHashMap<>();
    privateReferenceQueue<ReentrantLock> queue = newReferenceQueue<>();
 
    publicReentrantLock get(T key) {
        if(lockMap.size() > 1000) {
            clearEmptyRef();
        }
        WeakReference<ReentrantLock> lockRef = lockMap.get(key);
        ReentrantLock lock = (lockRef == null?null: lockRef.get());
        while(lock == null) {
            lockMap.putIfAbsent(key,newWeakLockRef<>(newReentrantLock(), queue, key));
            lockRef = lockMap.get(key);
            lock = (lockRef == null?null: lockRef.get());
            if(lock != null) {
                returnlock;
            }
            clearEmptyRef();
        }
        returnlock;
    }
 
    @SuppressWarnings("unchecked")
    privatevoidclearEmptyRef() {
        Reference<?extendsReentrantLock> ref;
        while((ref = queue.poll()) != null) {
            WeakLockRef<T, ? extendsReentrantLock> weakLockRef = (WeakLockRef<T, ? extendsReentrantLock>) ref;
            lockMap.remove(weakLockRef.key);
        }
    }
 
    privatestaticfinal class WeakLockRef<T, K> extendsWeakReference<K> {
        finalT key;
 
        privateWeakLockRef(K referent, ReferenceQueue<? superK> q, T key) {
            super(referent, q);
            this.key = key;
        }
    }
}

后记

最开始想借助 locksupport 和 AQS 来实现细粒度锁,写着写着发现正在实现的东西和java 原生的锁区别不大,于是放弃改为对java自带锁的封装,浪费了不少时间。

原创粉丝点击