C++ STL源码剖析——stl_alloc.h

来源:互联网 发布:java 进度条实现 编辑:程序博客网 时间:2024/05/18 14:25
stl_alloc.h# // Comment By:  凝霜  # // E-mail:      mdl2009@vip.qq.com  # // Blog:        http://blog.csdn.net/mdl13412  #   # // 特别说明: SGI STL的allocator在我的编译环境下不使用内存池  # //          而其内存池不进行内存释放操作, 其释放时机为程序退出或者stack unwinding  # //          由操作系统保证内存的回收  #   # /* #  * Copyright (c) 1996-1997 #  * Silicon Graphics Computer Systems, Inc. #  * #  * Permission to use, copy, modify, distribute and sell this software #  * and its documentation for any purpose is hereby granted without fee, #  * provided that the above copyright notice appear in all copies and #  * that both that copyright notice and this permission notice appear #  * in supporting documentation.  Silicon Graphics makes no #  * representations about the suitability of this software for any #  * purpose.  It is provided "as is" without express or implied warranty. #  */  #   # /* NOTE: This is an internal header file, included by other STL headers. #  *   You should not attempt to use it directly. #  */  #   # #ifndef __SGI_STL_INTERNAL_ALLOC_H  # #define __SGI_STL_INTERNAL_ALLOC_H  #   # #ifdef __SUNPRO_CC  # #  define __PRIVATE public  # // SUN编译器对private限制过多, 需要开放权限  # #else  # #  define __PRIVATE private  # #endif  #   # // 为了保证兼容性, 对于不支持模板类静态成员的情况, 使用malloc()进行内存分配  # #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG  # #  define __USE_MALLOC  # #endif  #   # // 实现了一些标准的node allocator  # // 但是不同于C++标准或者STL原始STL标准  # // 这些allocator没有封装不同指针类型  # // 事实上我们假定只有一种指针理性  # // allocation primitives意在分配不大于原始STL allocator分配的独立的对象  #   # #if 0  # #   include <new>  # #   define __THROW_BAD_ALLOC throw bad_alloc  # #elif !defined(__THROW_BAD_ALLOC)  # #   include <iostream.h>  # #   define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1)  # #endif  #   # #ifndef __ALLOC  # #   define __ALLOC alloc  # #endif  # #ifdef __STL_WIN32THREADS  # #   include <windows.h>  # #endif  #   # #include <stddef.h>  # #include <stdlib.h>  # #include <string.h>  # #include <assert.h>  # #ifndef __RESTRICT  # #  define __RESTRICT  # #endif  #   # // 多线程支持  # // __STL_PTHREADS       // GCC编译器  # // _NOTHREADS           // 不支持多线程  # // __STL_SGI_THREADS    // SGI机器专用  # // __STL_WIN32THREADS   // MSVC编译器  # #if !defined(__STL_PTHREADS) && !defined(_NOTHREADS) \  #  && !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS)  # #   define _NOTHREADS  # #endif  #   # # ifdef __STL_PTHREADS  #     // POSIX Threads  #     // This is dubious, since this is likely to be a high contention  #     // lock.   Performance may not be adequate.  # #   include <pthread.h>  # #   define __NODE_ALLOCATOR_LOCK \  #         if (threads) pthread_mutex_lock(&__node_allocator_lock)  # #   define __NODE_ALLOCATOR_UNLOCK \  #         if (threads) pthread_mutex_unlock(&__node_allocator_lock)  # #   define __NODE_ALLOCATOR_THREADS true  # #   define __VOLATILE volatile  // Needed at -O3 on SGI  # # endif  # # ifdef __STL_WIN32THREADS  #     // The lock needs to be initialized by constructing an allocator  #     // objects of the right type.  We do that here explicitly for alloc.  # #   define __NODE_ALLOCATOR_LOCK \  #         EnterCriticalSection(&__node_allocator_lock)  # #   define __NODE_ALLOCATOR_UNLOCK \  #         LeaveCriticalSection(&__node_allocator_lock)  # #   define __NODE_ALLOCATOR_THREADS true  # #   define __VOLATILE volatile  // may not be needed  # # endif /* WIN32THREADS */  # # ifdef __STL_SGI_THREADS  #     // This should work without threads, with sproc threads, or with  #     // pthreads.  It is suboptimal in all cases.  #     // It is unlikely to even compile on nonSGI machines.  #   #     extern "C" {  #       extern int __us_rsthread_malloc;  #     }  #     // The above is copied from malloc.h.  Including <malloc.h>  #     // would be cleaner but fails with certain levels of standard  #     // conformance.  # #   define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \  #                 { __lock(&__node_allocator_lock); }  # #   define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \  #                 { __unlock(&__node_allocator_lock); }  # #   define __NODE_ALLOCATOR_THREADS true  # #   define __VOLATILE volatile  // Needed at -O3 on SGI  # # endif  # # ifdef _NOTHREADS  # //  Thread-unsafe  # #   define __NODE_ALLOCATOR_LOCK  # #   define __NODE_ALLOCATOR_UNLOCK  # #   define __NODE_ALLOCATOR_THREADS false  # #   define __VOLATILE  # # endif  #   # __STL_BEGIN_NAMESPACE  #   # #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)  # #pragma set woff 1174  # #endif  #   # // Malloc-based allocator.  Typically slower than default alloc below.  # // Typically thread-safe and more storage efficient.  # #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG  # # ifdef __DECLARE_GLOBALS_HERE  #     void (* __malloc_alloc_oom_handler)() = 0;  #     // g++ 2.7.2 does not handle static template data members.  # # else  #     extern void (* __malloc_alloc_oom_handler)();  # # endif  # #endif  #   # // 一级配置器  # template <int inst>  # class __malloc_alloc_template  # {  # private:  #     // 用于在设置了__malloc_alloc_oom_handler情况下循环分配内存,  #     // 直到成功分配  #     static void *oom_malloc(size_t);  #     static void *oom_realloc(void *, size_t);  #   #     // 如果编译器支持模板类静态成员, 则使用错误处理函数, 类似C++的set_new_handler()  #     // 默认值为0, 如果不设置, 则内存分配失败时直接__THROW_BAD_ALLOC  # #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG  #     static void (* __malloc_alloc_oom_handler)();  # #endif  #   # public:  #     // 分配指定大小的内存(size_t n), 如果分配失败, 则进入循环分配阶段  #     // 循环分配前提是要保证正确设置了__malloc_alloc_oom_handler  #     static void * allocate(size_t n)  #     {  #         void *result = malloc(n);  #         if (0 == result) result = oom_malloc(n);  #         return result;  #     }  #   #     // 后面的size_t是为了兼容operator delele  #     static void deallocate(void *p, size_t /* n */)  #     { free(p); }  #   #     // 重新分配内存大小, 第二个参数是为了兼容operator new  #     static void * reallocate(void *p, size_t /* old_sz */, size_t new_sz)  #     {  #         void * result = realloc(p, new_sz);  #         if (0 == result) result = oom_realloc(p, new_sz);  #         return result;  #     }  #   #     // 设置错误处理函数, 返回原来的函数指针  #     // 不属于C++标准规定的接口  #     static void (* set_malloc_handler(void (*f)()))()  #     {  #         void (* old)() = __malloc_alloc_oom_handler;  #         __malloc_alloc_oom_handler = f;  #         return(old);  #     }  # };  #   # // malloc_alloc out-of-memory handling  #   # #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG  # template <int inst>  # void (* __malloc_alloc_template<inst>::__malloc_alloc_oom_handler)() = 0;  # #endif  #   # // 如果设置了__malloc_alloc_oom_handler, 则首先执行错误处理函数, 然后循环分配直到成功  # // 如果未设置__malloc_alloc_oom_handler, __THROW_BAD_ALLOC  # template <int inst>  # void * __malloc_alloc_template<inst>::oom_malloc(size_t n)  # {  #     void (* my_malloc_handler)();  #     void *result;  #   #     for (;;) {  #         my_malloc_handler = __malloc_alloc_oom_handler;  #         if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }  #         (*my_malloc_handler)();  #         result = malloc(n);  #         if (result) return(result);  #     }  # }  #   # template <int inst>  # void * __malloc_alloc_template<inst>::oom_realloc(void *p, size_t n)  # {  #     void (* my_malloc_handler)();  #     void *result;  #   #     for (;;) {  #         my_malloc_handler = __malloc_alloc_oom_handler;  #         if (0 == my_malloc_handler) { __THROW_BAD_ALLOC; }  #         (*my_malloc_handler)();  #         result = realloc(p, n);  #         if (result) return(result);  #     }  # }  #   # // 这个版本的STL并没有使用non-type模板参数  # typedef __malloc_alloc_template<0> malloc_alloc;  #   # // 这个类中的接口其实就是STL标准中的allocator的接口  # // 实际上所有的SGI STL都使用这个进行内存配置  # // 例如: stl_vector.h中  # // template <class T, class Alloc = alloc>  # // class vector  # // {  # //      ...  # // protected:  # //      typedef simple_alloc<value_type, Alloc> data_allocator;  # //      ...  # //};  # template<class T, class Alloc>  # class simple_alloc  # {  # public:  #     static T *allocate(size_t n)  #                 { return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }  #     static T *allocate(void)  #                 { return (T*) Alloc::allocate(sizeof (T)); }  #     static void deallocate(T *p, size_t n)  #                 { if (0 != n) Alloc::deallocate(p, n * sizeof (T)); }  #     static void deallocate(T *p)  #                 { Alloc::deallocate(p, sizeof (T)); }  # };  #   # // Allocator adaptor to check size arguments for debugging.  # // Reports errors using assert.  Checking can be disabled with  # // NDEBUG, but it's far better to just use the underlying allocator  # // instead when no checking is desired.  # // There is some evidence that this can confuse Purify.  # template <class Alloc>  # class debug_alloc  # {  # private:  #     enum {extra = 8};       // Size of space used to store size.  Note  #                             // that this must be large enough to preserve  #                             // alignment.  #   # public:  #   #     // extra 保证不会分配为0的内存空间, 而且要保证内存对齐  #     // 把分配内存的最前面设置成n的大小, 用于后面校验  #     // 内存对齐的作用就是保护前面extra大小的数据不被修改  #     static void * allocate(size_t n)  #     {  #         char *result = (char *)Alloc::allocate(n + extra);  #         *(size_t *)result = n;  #         return result + extra;  #     }  #   #     // 如果*(size_t *)real_p != n则肯定发生向前越界  #     static void deallocate(void *p, size_t n)  #     {  #         char * real_p = (char *)p - extra;  #         assert(*(size_t *)real_p == n);  #         Alloc::deallocate(real_p, n + extra);  #     }  #   #     static void * reallocate(void *p, size_t old_sz, size_t new_sz)  #     {  #         char * real_p = (char *)p - extra;  #         assert(*(size_t *)real_p == old_sz);  #         char * result = (char *)  #                       Alloc::reallocate(real_p, old_sz + extra, new_sz + extra);  #         *(size_t *)result = new_sz;  #         return result + extra;  #     }  # };  #   # # ifdef __USE_MALLOC  #   # typedef malloc_alloc alloc;  # typedef malloc_alloc single_client_alloc;  #   # # else  #   # // 默认的node allocator  # // 如果有合适的编译器, 速度上与原始的STL class-specific allocators大致等价  # // 但是具有产生更少内存碎片的优点  # // Default_alloc_template参数是用于实验性质的, 在未来可能会消失  # // 客户只能在当下使用alloc  # //  # // 重要的实现属性:  # // 1. 如果客户请求一个size > __MAX_BYTE的对象, 则直接使用malloc()分配  # // 2. 对于其它情况下, 我们将请求对象的大小按照内存对齐向上舍入ROUND_UP(requested_size)  # // TODO: 待翻译  # // 2. In all other cases, we allocate an object of size exactly  # //    ROUND_UP(requested_size).  Thus the client has enough size  # //    information that we can return the object to the proper free list  # //    without permanently losing part of the object.  # //  #   # // 第一个模板参数指定是否有多于一个线程使用本allocator  # // 在一个default_alloc实例中分配对象, 在另一个deallocate实例中释放对象, 是安全的  # // 这有效的转换其所有权到另一个对象  # // 这可能导致对我们引用的区域产生不良影响  # // 第二个模板参数仅仅用于创建多个default_alloc实例  # // 不同容器使用不同allocator实例创建的node拥有不同类型, 这限制了此方法的通用性  #   # // Sun C++ compiler需要在类外定义这些枚举  # #ifdef __SUNPRO_CC  # // breaks if we make these template class members:  #   enum {__ALIGN = 8};  #   enum {__MAX_BYTES = 128};  #   enum {__NFREELISTS = __MAX_BYTES/__ALIGN};  # #endif  #   # template <bool threads, int inst>  # class __default_alloc_template  # {  # private:  #   // Really we should use static const int x = N  #   // instead of enum { x = N }, but few compilers accept the former.  # # ifndef __SUNPRO_CC  #     enum {__ALIGN = 8};  #     enum {__MAX_BYTES = 128};  #     enum {__NFREELISTS = __MAX_BYTES/__ALIGN};  # # endif  #     // 向上舍入操作  #     // 解释一下, __ALIGN - 1指明的是实际内存对齐的粒度  #     // 例如__ALIGN = 8时, 我们只需要7就可以实际表示8个数(0~7)  #     // 那么~(__ALIGN - 1)就是进行舍入的粒度  #     // 我们将(bytes) + __ALIGN-1)就是先进行进位, 然后截断  #     // 这就保证了我是向上舍入的  #     // 例如byte = 100, __ALIGN = 8的情况  #     // ~(__ALIGN - 1) = (1 000)B  #     // ((bytes) + __ALIGN-1) = (1 101 011)B  #     // (((bytes) + __ALIGN-1) & ~(__ALIGN - 1)) = (1 101 000 )B = (104)D  #     // 104 / 8 = 13, 这就实现了向上舍入  #     // 对于byte刚好满足内存对齐的情况下, 结果保持byte大小不变  #     // 记得《Hacker's Delight》上面有相关的计算  #     // 这个表达式与下面给出的等价  #     // ((((bytes) + _ALIGN - 1) * _ALIGN) / _ALIGN)  #     // 但是SGI STL使用的方法效率非常高  #     static size_t ROUND_UP(size_t bytes)  #     {  #         return (((bytes) + __ALIGN-1) & ~(__ALIGN - 1));  #     }  # __PRIVATE:  #     // 管理内存链表用  #     // 为了尽最大可能减少内存的使用, 这里使用一个union  #     // 如果使用第一个成员, 则指向另一个相同的union obj  #     // 而如果使用第二个成员, 则指向实际的内存区域  #     // 这样就实现了链表结点只使用一个指针的大小空间, 却能同时做索引和指向内存区域  #     // 这个技巧性非常强, 值得学习  #     union obj  #     {  #         union obj * free_list_link;  #         char client_data[1];    /* The client sees this.        */  #     };  # private:  # # ifdef __SUNPRO_CC  #     static obj * __VOLATILE free_list[];  #         // Specifying a size results in duplicate def for 4.1  # # else  #     // 这里分配的free_list为16  #     // 对应的内存链容量分别为8, 16, 32 ... 128  #     static obj * __VOLATILE free_list[__NFREELISTS];  # # endif  #     // 根据待待分配的空间大小, 在free_list中选择合适的大小  #     static  size_t FREELIST_INDEX(size_t bytes)  #     {  #         return (((bytes) + __ALIGN-1)/__ALIGN - 1);  #     }  #   #   // Returns an object of size n, and optionally adds to size n free list.  #   static void *refill(size_t n);  #   // Allocates a chunk for nobjs of size "size".  nobjs may be reduced  #   // if it is inconvenient to allocate the requested number.  #   static char *chunk_alloc(size_t size, int &nobjs);  #   #   // 内存池  #   static char *start_free;      // 内存池起始点  #   static char *end_free;        // 内存池结束点  #   static size_t heap_size;      // 已经在堆上分配的空间大小  #   # // 下面三个条件编译给多线程条件下使用的锁提供必要支持  # # ifdef __STL_SGI_THREADS  #     static volatile unsigned long __node_allocator_lock;  #     static void __lock(volatile unsigned long *);  #     static inline void __unlock(volatile unsigned long *);  # # endif  #   # # ifdef __STL_PTHREADS  #     static pthread_mutex_t __node_allocator_lock;  # # endif  #   # # ifdef __STL_WIN32THREADS  #     static CRITICAL_SECTION __node_allocator_lock;  #     static bool __node_allocator_lock_initialized;  #   #   public:  #     __default_alloc_template() {  #     // This assumes the first constructor is called before threads  #     // are started.  #         if (!__node_allocator_lock_initialized) {  #             InitializeCriticalSection(&__node_allocator_lock);  #             __node_allocator_lock_initialized = true;  #         }  #     }  #   private:  # # endif  #   #     // 用于多线程环境下锁定操作用  #     class lock  #     {  #     public:  #         lock() { __NODE_ALLOCATOR_LOCK; }  #         ~lock() { __NODE_ALLOCATOR_UNLOCK; }  #     };  #     friend class lock;  #   # public:  #   /* n must be > 0      */  #   static void * allocate(size_t n)  #   {  #     obj * __VOLATILE * my_free_list;  #     obj * __RESTRICT result;  #   #     // 如果待分配对象大于__MAX_BYTES, 使用一级配置器分配  #     if (n > (size_t) __MAX_BYTES) {  #         return(malloc_alloc::allocate(n));  #     }  #     my_free_list = free_list + FREELIST_INDEX(n);  #     // Acquire the lock here with a constructor call.  #     // This ensures that it is released in exit or during stack  #     // unwinding.  # #       ifndef _NOTHREADS  #         /*REFERENCED*/  #         lock lock_instance;  # #       endif  #     result = *my_free_list;  #     // 如果是第一次使用这个容量的链表, 则分配此链表需要的内存  #     // 如果不是, 则判断内存吃容量, 不够则分配  #     if (result == 0) {  #         void *r = refill(ROUND_UP(n));  #         return r;  #     }  #     *my_free_list = result -> free_list_link;  #     return (result);  #   };  #   #   /* p may not be 0 */  #   static void deallocate(void *p, size_t n)  #   {  #     obj *q = (obj *)p;  #     obj * __VOLATILE * my_free_list;  #   #     // 对于大于__MAX_BYTES的对象, 因为采用的是一级配置器分配, 所以同样使用一级配置器释放  #     if (n > (size_t) __MAX_BYTES) {  #         malloc_alloc::deallocate(p, n);  #         return;  #     }  #     my_free_list = free_list + FREELIST_INDEX(n);  #     // acquire lock  # #       ifndef _NOTHREADS  #         /*REFERENCED*/  #         lock lock_instance;  # #       endif /* _NOTHREADS */  #     q -> free_list_link = *my_free_list;  #     *my_free_list = q;  #     // lock is released here  #   }  #   #   static void * reallocate(void *p, size_t old_sz, size_t new_sz);  # } ;  #   # typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc;  # typedef __default_alloc_template<false, 0> single_client_alloc;  #   # // 每次分配一大块内存, 防止多次分配小内存块带来的内存碎片  # // 进行分配操作时, 根据具体环境决定是否加锁  # // 我们假定要分配的内存满足内存对齐要求  # template <bool threads, int inst>  # char*  # __default_alloc_template<threads, inst>::chunk_alloc(size_t size, int& nobjs)  # {  #     char * result;  #     size_t total_bytes = size * nobjs;  #     size_t bytes_left = end_free - start_free;  // 计算内存池剩余容量  #   #     // 如果内存池中剩余内存>=需要分配的内内存, 返回start_free指向的内存块,  #     // 并且重新设置内存池起始点  #     if (bytes_left >= total_bytes) {  #         result = start_free;  #         start_free += total_bytes;  #         return(result);  #     }  #     // 如果内存吃中剩余的容量不够分配, 但是能至少分配一个节点时,  #     // 返回所能分配的最多的节点, 返回start_free指向的内存块  #     // 并且重新设置内存池起始点  #     else if (bytes_left >= size) {  #         nobjs = bytes_left/size;  #         total_bytes = size * nobjs;  #         result = start_free;  #         start_free += total_bytes;  #         return(result);  #     }  #     // 内存池剩余内存连一个节点也不够分配  #     else {  #         size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);  #         // 将剩余的内存分配给指定的free_list[FREELIST_INDEX(bytes_left)]  #         if (bytes_left > 0) {  #             obj * __VOLATILE * my_free_list =  #                         free_list + FREELIST_INDEX(bytes_left);  #   #             ((obj *)start_free) -> free_list_link = *my_free_list;  #             *my_free_list = (obj *)start_free;  #         }  #         start_free = (char *)malloc(bytes_to_get);  #         // 分配失败, 搜索原来已经分配的内存块, 看是否有大于等于当前请求的内存块  #         if (0 == start_free) {  #             int i;  #             obj * __VOLATILE * my_free_list, *p;  #             // Try to make do with what we have.  That can't  #             // hurt.  We do not try smaller requests, since that tends  #             // to result in disaster on multi-process machines.  #             for (i = size; i <= __MAX_BYTES; i += __ALIGN) {  #                 my_free_list = free_list + FREELIST_INDEX(i);  #                 p = *my_free_list;  #                 // 找到了一个, 将其加入内存池中  #                 if (0 != p) {  #                     *my_free_list = p -> free_list_link;  #                     start_free = (char *)p;  #                     end_free = start_free + i;  #                     // 内存池更新完毕, 重新分配需要的内存  #                     return(chunk_alloc(size, nobjs));  #                     // Any leftover piece will eventually make it to the  #                     // right free list.  #                 }  #             }  #   #             // 再次失败, 直接调用一级配置器分配, 期待异常处理函数能提供帮助  #             // 不过在我看来, 内存分配失败进行其它尝试已经没什么意义了,  #             // 最好直接log, 然后让程序崩溃  #         end_free = 0;   // In case of exception.  #             start_free = (char *)malloc_alloc::allocate(bytes_to_get);  #         }  #         heap_size += bytes_to_get;  #         end_free = start_free + bytes_to_get;  #         // 内存池更新完毕, 重新分配需要的内存  #         return(chunk_alloc(size, nobjs));  #     }  # }  #   #   # // 返回一个大小为n的对象, 并且加入到free_list[FREELIST_INDEX(n)]  # // 进行分配操作时, 根据具体环境决定是否加锁  # // 我们假定要分配的内存满足内存对齐要求  # template <bool threads, int inst>  # void* __default_alloc_template<threads, inst>::refill(size_t n)  # {  #     int nobjs = 20;  #     char * chunk = chunk_alloc(n, nobjs);  #     obj * __VOLATILE * my_free_list;  #     obj * result;  #     obj * current_obj, * next_obj;  #     int i;  #   #     // 如果内存池仅仅只够分配一个对象的空间, 直接返回即可  #     if (1 == nobjs) return(chunk);  #   #     // 内存池能分配更多的空间  #     my_free_list = free_list + FREELIST_INDEX(n);  #   #     // 在chunk的空间中建立free_list  #       result = (obj *)chunk;  #       *my_free_list = next_obj = (obj *)(chunk + n);  #       for (i = 1; ; i++) {  #         current_obj = next_obj;  #         next_obj = (obj *)((char *)next_obj + n);  #         if (nobjs - 1 == i) {  #             current_obj -> free_list_link = 0;  #             break;  #         } else {  #             current_obj -> free_list_link = next_obj;  #         }  #       }  #     return(result);  # }  #   # template <bool threads, int inst>  # void*  # __default_alloc_template<threads, inst>::reallocate(void *p,  #                                                     size_t old_sz,  #                                                     size_t new_sz)  # {  #     void * result;  #     size_t copy_sz;  #   #     // 如果old_size和new_size均大于__MAX_BYTES, 则直接调用realloc()  #     // 因为这部分内存不是经过内存池分配的  #     if (old_sz > (size_t) __MAX_BYTES && new_sz > (size_t) __MAX_BYTES) {  #         return(realloc(p, new_sz));  #     }  #     // 如果ROUND_UP(old_sz) == ROUND_UP(new_sz), 内存大小没变化, 不进行重新分配  #     if (ROUND_UP(old_sz) == ROUND_UP(new_sz)) return(p);  #     // 进行重新分配并拷贝数据  #     result = allocate(new_sz);  #     copy_sz = new_sz > old_sz? old_sz : new_sz;  #     memcpy(result, p, copy_sz);  #     deallocate(p, old_sz);  #     return(result);  # }  #   # #ifdef __STL_PTHREADS  #     template <bool threads, int inst>  #     pthread_mutex_t  #     __default_alloc_template<threads, inst>::__node_allocator_lock  #         = PTHREAD_MUTEX_INITIALIZER;  # #endif  #   # #ifdef __STL_WIN32THREADS  #     template <bool threads, int inst> CRITICAL_SECTION  #     __default_alloc_template<threads, inst>::__node_allocator_lock;  #   #     template <bool threads, int inst> bool  #     __default_alloc_template<threads, inst>::__node_allocator_lock_initialized  #     = false;  # #endif  #   # #ifdef __STL_SGI_THREADS  # __STL_END_NAMESPACE  # #include <mutex.h>  # #include <time.h>  # __STL_BEGIN_NAMESPACE  # // Somewhat generic lock implementations.  We need only test-and-set  # // and some way to sleep.  These should work with both SGI pthreads  # // and sproc threads.  They may be useful on other systems.  # template <bool threads, int inst>  # volatile unsigned long  # __default_alloc_template<threads, inst>::__node_allocator_lock = 0;  #   # #if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__)  # #   define __test_and_set(l,v) test_and_set(l,v)  # #endif  #   # template <bool threads, int inst>  # void  # __default_alloc_template<threads, inst>::__lock(volatile unsigned long *lock)  # {  #     const unsigned low_spin_max = 30;  // spin cycles if we suspect uniprocessor  #     const unsigned high_spin_max = 1000; // spin cycles for multiprocessor  #     static unsigned spin_max = low_spin_max;  #     unsigned my_spin_max;  #     static unsigned last_spins = 0;  #     unsigned my_last_spins;  #     static struct timespec ts = {0, 1000};  #     unsigned junk;  # #   define __ALLOC_PAUSE junk *= junk; junk *= junk; junk *= junk; junk *= junk  #     int i;  #   #     if (!__test_and_set((unsigned long *)lock, 1)) {  #         return;  #     }  #     my_spin_max = spin_max;  #     my_last_spins = last_spins;  #     for (i = 0; i < my_spin_max; i++) {  #         if (i < my_last_spins/2 || *lock) {  #             __ALLOC_PAUSE;  #             continue;  #         }  #         if (!__test_and_set((unsigned long *)lock, 1)) {  #             // got it!  #             // Spinning worked.  Thus we're probably not being scheduled  #             // against the other process with which we were contending.  #             // Thus it makes sense to spin longer the next time.  #             last_spins = i;  #             spin_max = high_spin_max;  #             return;  #         }  #     }  #     // We are probably being scheduled against the other process.  Sleep.  #     spin_max = low_spin_max;  #     for (;;) {  #         if (!__test_and_set((unsigned long *)lock, 1)) {  #             return;  #         }  #         nanosleep(&ts, 0);  #     }  # }  #   # template <bool threads, int inst>  # inline void  # __default_alloc_template<threads, inst>::__unlock(volatile unsigned long *lock)  # {  # #   if defined(__GNUC__) && __mips >= 3  #         asm("sync");  #         *lock = 0;  # #   elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64))  #         __lock_release(lock);  # #   else  #         *lock = 0;  #         // This is not sufficient on many multiprocessors, since  #         // writes to protected variables and the lock may be reordered.  # #   endif  # }  # #endif  #   # // 内存池起始位置  # template <bool threads, int inst>  # char *__default_alloc_template<threads, inst>::start_free = 0;  # // 内存池结束位置  # template <bool threads, int inst>  # char *__default_alloc_template<threads, inst>::end_free = 0;  #   # template <bool threads, int inst>  # size_t __default_alloc_template<threads, inst>::heap_size = 0;  # // 内存池容量索引数组  # template <bool threads, int inst>  # __default_alloc_template<threads, inst>::obj * __VOLATILE  # __default_alloc_template<threads, inst> ::free_list[  # # ifdef __SUNPRO_CC  #     __NFREELISTS  # # else  #     __default_alloc_template<threads, inst>::__NFREELISTS  # # endif  # ] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, };  # // The 16 zeros are necessary to make version 4.1 of the SunPro  # // compiler happy.  Otherwise it appears to allocate too little  # // space for the array.  #   # # ifdef __STL_WIN32THREADS  #   // Create one to get critical section initialized.  #   // We do this onece per file, but only the first constructor  #   // does anything.  #   static alloc __node_allocator_dummy_instance;  # # endif  #   # #endif /* ! __USE_MALLOC */  #   # #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)  # #pragma reset woff 1174  # #endif  #   # __STL_END_NAMESPACE  #   # #undef __PRIVATE  #   # #endif /* __SGI_STL_INTERNAL_ALLOC_H */  #   # // Local Variables:  # // mode:C++  # // End:
本文节转自:http://www.cnblogs.com/lfsblack/archive/2012/11/10/2764334.html
原创粉丝点击