okhttp源码解析

来源:互联网 发布:剑雨江湖灵骑进阶数据 编辑:程序博客网 时间:2024/05/22 06:37

OkHttp是一个非常优秀的网络请求框架,已被谷歌加入到Android的源码中。目前比较流行的Retrofit也是默认使用OkHttp的。所以OkHttp的源码是一个不容错过的学习资源,学习源码之前,务必熟练使用这个框架,否则就是跟自己过不去。

use -> running source code -> reading & learning the source code.

1、初识


在早期的版本中,OkHttp支持Http1.0,1.1,SPDY协议,但是Http2协议的问世,导致OkHttp也做出了改变,OkHttp鼓励开发者使用HTTP2,不再对SPDY协议给予支持。另外,新版本的OkHttp还有一个新的亮点就是支持WebScoket,这样我们就可以非常方便的建立长连接了。关于Http各个版本的异同,可以查看这篇博客:http://blog.csdn.net/json_it/article/details/78312311
作为一个优秀的网络框架,OkHttp同样支持网络缓存,OkHttp的缓存基于DiskLruCache,对这个类不熟悉的可以这里学习。DiskLruCache虽然没有被收入到Android的源码中,但也是谷歌推荐的一个优秀的缓存框架。有时间可以自己学习源码,这里不再叙述。
在安全方便,OkHttp目前支持了如上图所示的TLS版本,以确保一个安全的Socket连接。
重试及重定向就不再说了,都知道什么意思,左上角给出了各浏览器或Http版本支持的重试或重定向次数。

2、流程(以同步请求为例)

2.1、基本使用

OkHttpClient client = new OkHttpClient();                Request request = new Request.Builder().url("http://www.baidu.com")                        .build();                try {                    Response response = client.newCall(request).execute();                    if (response.isSuccessful()) {                        System.out.println("成功");                    }                } catch (IOException e) {                    e.printStackTrace();                }

2.2、同步请求流程




在开始流程讲解之前,先了解一下三个概念的含义(以下来自源码注释):
Connections:连接远程服务器的物理连接;
Streams:基于Connection的逻辑Http请求/响应对。一个连接可以承载多少个Stream都是有限制的,Http1.x连接只能承载一个Stream,而一个Http2.0连接可以承载多个Stream(支持并发请求,并发请求共用一个Connection);
Calls:逻辑Stream序列,典型的例子是一个初始请求及其后续的请求。We prefer to keep all streams of a single call on the same  connection for better behavior and locality.
对于同步和异步请求,唯一的区别就是异步请求会放在线程池(ThreadPoolExecutor)中去执行,而同步请求则会在当前线程中执行,注意:同步请求会阻塞当前线程。
对于Http1.1,call - 1:1 - Stream - 1:1 - connection;
对于http2.0,call - 1:1 - Stream - N:1 - connection;
由上述流程图,我们可以直观的了解到一次基本的请求包括如下两个部分:call+interceptors。
call:最终的请求对象;
interceptors:这是OkHttp最核心的部分,一个请求会经过OkHttp的若干个拦截器进行处理,每一个拦截器都会完成一个功能模块,比如CacheInterceptor完成网络请求的缓存。一个Request经过拦截器链的处理之后,会得到最终的Response。
interceptors里面包括的东西很多东西,后续的源码分析就是以拦截器为主线来进行分析。

3、源码分析

OkHttpClient client = new OkHttpClient();                  Request request = new Request.Builder().url("http://www.baidu.com")                          .build();                  try {                      Response response = client.newCall(request).execute();                      if (response.isSuccessful()) {                          System.out.println("成功");                      }                  } catch (IOException e) {                      e.printStackTrace();                  }
还是以上面的这段最基本的用法作为源码分析的入口。

3.1、OkHttpClient

首先,我们生成了一个OKHttpClient对象,注意OKHttpClient对象的生成有两种方式:一种是我们使用的方式,另一种是使用建造者(Builder)模式 -- new OkHttpClient.Builder()....Build()。那么这两种方式有什么区别呢?
第一种:
  public OkHttpClient() {    this(new Builder());  }public Builder() {      dispatcher = new Dispatcher();      protocols = DEFAULT_PROTOCOLS;      connectionSpecs = DEFAULT_CONNECTION_SPECS;      eventListenerFactory = EventListener.factory(EventListener.NONE);      proxySelector = ProxySelector.getDefault();      cookieJar = CookieJar.NO_COOKIES;      socketFactory = SocketFactory.getDefault();      hostnameVerifier = OkHostnameVerifier.INSTANCE;      certificatePinner = CertificatePinner.DEFAULT;      proxyAuthenticator = Authenticator.NONE;      authenticator = Authenticator.NONE;      connectionPool = new ConnectionPool();      dns = Dns.SYSTEM;      followSslRedirects = true;      followRedirects = true;      retryOnConnectionFailure = true;      connectTimeout = 10_000;      readTimeout = 10_000;      writeTimeout = 10_000;      pingInterval = 0;    }
可以看到我们简单的一句new OkHttpClient(),OkHttp就已经为我们做了很多工作,很多我们需要的参数在这里都获得默认值。各字段含义如下:
dispatcher:直译就是调度器的意思。主要作用是通过双端队列保存Calls(同步&异步Call),同时在线程池中执行异步请求。后面会详细解析该类。
protocols:默认支持的Http协议版本  --   Protocol.HTTP_2, Protocol.HTTP_1_1;
connectionSpecs:OKHttp连接(Connection)配置 -- ConnectionSpec.MODERN_TLS, ConnectionSpec.CLEARTEXT,我们分别看一下:
/** TLS 连接 */ public static final ConnectionSpec MODERN_TLS = new Builder(true)      .cipherSuites(APPROVED_CIPHER_SUITES)      .tlsVersions(TlsVersion.TLS_1_3, TlsVersion.TLS_1_2, TlsVersion.TLS_1_1, TlsVersion.TLS_1_0)      .supportsTlsExtensions(true)      .build();/** 未加密、未认证的Http连接. */ public static final ConnectionSpec CLEARTEXT = new Builder(false).build();
可以看出一个是针对TLS连接的配置,一个是针对普通的Http连接的配置;
eventListenerFactory :一个Call的状态监听器,注意这个是okhttp新添加的功能,目前还不是最终版,在后面的版本中会发生改变的。
proxySelector :使用默认的代理选择器;
cookieJar:默认是没有Cookie的;
socketFactory:使用默认的Socket工厂产生Socket;
hostnameVerifier、 certificatePinner、 proxyAuthenticator、 authenticator:安全相关的设置;
connectionPool :连接池;后面会详细介绍;
dns:这个一看就知道,域名解析系统 domain name -> ip address;
pingInterval :这个就和WebSocket有关了。为了保持长连接,我们必须间隔一段时间发送一个ping指令进行保活;
第二种:默认的设置和第一种方式相同,但是我们可以利用建造者模式单独的设置每一个属性;
注意事项:OkHttpClient强烈建议全局单例使用,因为每一个OkHttpClient都有自己单独的连接池和线程池,复用连接池和线程池能够减少延迟、节省内存。

3.2、RealCall(生成一个Call)

在我们定义了请求对象request之后,我们需要生成一个Call对象,该对象代表了一个准备被执行的请求。Call是可以被取消的。Call对象代表了一个request/response 对(Stream).还有就是一个Call只能被执行一次。执行同步请求,代码如下(RealCall的execute方法):
@Override public Response execute() throws IOException {    synchronized (this) {      if (executed) throw new IllegalStateException("Already Executed");      executed = true;    }    captureCallStackTrace();    eventListener.callStart(this);    try {      client.dispatcher().executed(this);      Response result = getResponseWithInterceptorChain();      if (result == null) throw new IOException("Canceled");      return result;    } catch (IOException e) {      eventListener.callFailed(this, e);      throw e;    } finally {      client.dispatcher().finished(this);    }  }
解析:首先如果executed等于true,说明已经被执行,如果再次调用执行就抛出异常。这说明了一个Call只能被执行。注意此处同步请求与异步请求生成的Call对象的区别,执行
异步请求代码如下(RealCall的enqueue方法):
@Override public void enqueue(Callback responseCallback) {    synchronized (this) {      if (executed) throw new IllegalStateException("Already Executed");      executed = true;    }    captureCallStackTrace();    eventListener.callStart(this);    client.dispatcher().enqueue(new AsyncCall(responseCallback));  }
可以看到同步请求生成的是RealCall对象,而异步请求生成的是AsyncCall对象。AsyncCall说到底其实就是Runnable的子类。
接着上面继续分析,如果可以执行,则对当前请求添加监听器等操作,然后将请求Call对象放入调度器Dispatcher中。最后由拦截器链中的各个拦截器来对该请求进行处理,返回最终的Response。

3.3、Dispatcher(调度器)

Dispatcher是保存同步和异步Call的地方,并负责执行异步AsyncCall。

如上图,针对同步请求,Dispatcher使用了一个Deque保存了同步任务;针对异步请求,Dispatcher使用了两个Deque,一个保存准备执行的请求,一个保存正在执行的请求,为什么要用两个呢?因为Dispatcher默认支持最大的并发请求是64个,单个Host最多执行5个并发请求,如果超过,则Call会先被放入到readyAsyncCall中,当出现空闲的线程时,再将readyAsyncCall中的线程移入到runningAsynCalls中,执行请求。先看Dispatcher的流程,跟着流程读源码:

在3.2小节中,当一个请求是同步请求的请求的,可以看到执行了这句代码:client.dispatcher().executed(this);根据Dispatcher源码,看一下到底发生了什么?
 synchronized void executed(RealCall call) {    runningSyncCalls.add(call);  }
可以看到,只是简单的将同步任务当到了runningSyncCalls集合中。
在经过拦截器的处理之后,得到了响应的Response,最终会执行finally语句块:
 void finished(RealCall call) {    finished(runningSyncCalls, call, false);  }  private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {    int runningCallsCount;    Runnable idleCallback;    synchronized (this) {      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");//将请求移除集合      if (promoteCalls) promoteCalls();     ...    }   ...  }
对于同步请求,只是简单的将同步请求移除runningSyncCalls集合。promoteCalls参数是false,因此不会执行promoteCalls方法,promoteCalls方法用于遍历并执行异步请求待执行集合中的请求。
Dispatcher中,同步请求的逻辑还是比较简单的。异步请求的逻辑相对麻烦一些,但也不是很复杂。
在3.2小节,第二处代码是执行异步请求的逻辑,最关键的是最后依据代码:client.dispatcher().enqueue(new AsyncCall(responseCallback));紧跟着看一下enqueue方法中到底发生了什么:
 synchronized void enqueue(AsyncCall call) {    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {      runningAsyncCalls.add(call);      executorService().execute(call);    } else {      readyAsyncCalls.add(call);    }  }
可以看到如果正在执行的请求总数<=64 && 单个Host正在执行的请求<=5,则将请求加入到runningAsyncCalls集合中,紧接着就是利用线程池执行该请求,否则就将该请求放入readyAsyncCalls集合中。上面我们已经说了,AsyncCall是Runnable的子类(间接),因此,在线程池中最终会调用AsyncCall的execute()方法执行异步请求:
 @Override protected void execute() {      boolean signalledCallback = false;      try {        Response response = getResponseWithInterceptorChain();//拦截器链        if (retryAndFollowUpInterceptor.isCanceled()) {//重试失败,回调onFailure方法          signalledCallback = true;          responseCallback.onFailure(RealCall.this, new IOException("Canceled"));        } else {          signalledCallback = true;          responseCallback.onResponse(RealCall.this, response);        }      } catch (IOException e) {        if (signalledCallback) {          // Do not signal the callback twice!          Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);        } else {          eventListener.callFailed(RealCall.this, e);          responseCallback.onFailure(RealCall.this, e);        }      } finally {        client.dispatcher().finished(this);//结束      }    }
此处的执行逻辑和同步的执行逻辑基本相同,区别在最后一句代码:client.dispatcher().finished(this);因为这是一个异步任务,所以会调用另外一个finish方法:
void finished(AsyncCall call) {    finished(runningAsyncCalls, call, true);  }
 private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {    int runningCallsCount;    Runnable idleCallback;    synchronized (this) {      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");//将请求移除集合      if (promoteCalls) promoteCalls();     ...    }   ...  }

可以看到最后一个参数是true,这意味着需要执行promoteCalls方法:
private void promoteCalls() {    if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.    if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.    for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {      AsyncCall call = i.next();      if (runningCallsForHost(call) < maxRequestsPerHost) {        i.remove();        runningAsyncCalls.add(call);        executorService().execute(call);      }      if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.    }  }
该方法主要是遍历执行readyRunningCalls集合中待执行的请求,当然前提是正在执行的Call总数没有超过64,并且readyAsyncCalls集合不为空。如果readyAsyncCalls集合为空,则意味着请求差不多都执行了。放入runningAsyncCalls集合中的请求会继续走上述的流程,直到全部的请求被执行。

3.4、拦截器链

在依次介绍各个拦截器之前,先介绍一个比较重要的类:RealInterceptorChain,直译就是拦截器链类;这个类在什么地方会用到呢?还是3.2节,RealCall的execute方法有这么一段代码:
Response result = getResponseWithInterceptorChain();
没错,在getResponseWithInterceptorChain();方法中我们就用到了这个RealInterceptorChain类。
Response getResponseWithInterceptorChain() throws IOException {    // Build a full stack of interceptors.    List<Interceptor> interceptors = new ArrayList<>();    interceptors.addAll(client.interceptors());    interceptors.add(retryAndFollowUpInterceptor);    interceptors.add(new BridgeInterceptor(client.cookieJar()));    interceptors.add(new CacheInterceptor(client.internalCache()));    interceptors.add(new ConnectInterceptor(client));    if (!forWebSocket) {      interceptors.addAll(client.networkInterceptors());    }    interceptors.add(new CallServerInterceptor(forWebSocket));    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,        originalRequest, this, eventListener, client.connectTimeoutMillis(),        client.readTimeoutMillis(), client.writeTimeoutMillis());    return chain.proceed(originalRequest);  }
可以看到,在该方法中,我们依次添加了用户自定义的interceptor、retryAndFollowUpInterceptor、BridgeInterceptor、CacheInterceptor、ConnectInterceptor、 networkInterceptors、CallServerInterceptor,并将这些拦截器传递给了这个RealInterceptorChain。拦截器之所以可以依次调用,并最终再从后先前返回Response,都依赖于RealInterceptorChain的proceed方法。
 public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,      RealConnection connection) throws IOException {    if (index >= interceptors.size()) throw new AssertionError();    ......    // Call the next interceptor in the chain.    RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,        connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,        writeTimeout);    Interceptor interceptor = interceptors.get(index);    Response response = interceptor.intercept(next);    ......    return response;  }
该方法最核心的代码就是中间的这几句,执行当前拦截器的Intercept方法,并调用下一个(index+1)拦截器。下一个(index+1)拦截器的调用依赖于当前拦截器的Intercept方法中,对RealInterceptorChain的proceed方法的调用:
response = realChain.proceed(request, streamAllocation, null, null);
可以看到当前拦截器的Response依赖于下一个拦截器的Intercept的Response。因此,就会沿着这条拦截器链依次调用每一个拦截器,当执行到最后一个拦截器之后,就会沿着相反的方向依次返回Response,最终得到我们需要的“终极版”Response。

3.4.1、重试及 followup拦截器

     @Override        public Response intercept(Chain chain) throws IOException {            Request request = chain.request();//获取Request对象            RealInterceptorChain realChain = (RealInterceptorChain) chain;//获取拦截器链对象,用于后面的chain.proceed(...)方法            Call call = realChain.call();            EventListener eventListener = realChain.eventListener();//监听器            streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(request.url()),                    call, eventListener, callStackTrace);            int followUpCount = 0;            Response priorResponse = null;            while (true) {//循环                if (canceled) {                    streamAllocation.release();                    throw new IOException("Canceled");                }                Response response;                boolean releaseConnection = true;                try {                    response = realChain.proceed(request, streamAllocation, null, null);//调用下一个拦截器                    releaseConnection = false;                } catch (RouteException e) {                    // The attempt to connect via a route failed. The request will not have been sent.                    if (!recover(e.getLastConnectException(), false, request)) {//路由异常,尝试恢复,如果再失败就抛出异常                        throw e.getLastConnectException();                    }                    releaseConnection = false;                    continue;//继续重试                } catch (IOException e) {                    // An attempt to communicate with a server failed. The request may have been sent.                    boolean requestSendStarted = !(e instanceof ConnectionShutdownException);                    if (!recover(e, requestSendStarted, request)) throw e;连接关闭异常,尝试恢复                            releaseConnection = false;                    continue;//继续重试                } finally {                    // We're throwing an unchecked exception. Release any resources.                    if (releaseConnection) {                        streamAllocation.streamFailed(null);                        streamAllocation.release();                    }                }                // Attach the prior response if it exists. Such responses never have a body.                if (priorResponse != null) {//前一个重试得到的Response                    response = response.newBuilder()                            .priorResponse(priorResponse.newBuilder()                                    .body(null)                                    .build())                            .build();                }                //Figures out the HTTP request to make in response to receiving {@code userResponse}. This will                //either add authentication headers, follow redirects or handle a client request timeout. If a                //follow-up is either unnecessary or not applicable, this returns null.                // followUpRequest方法的主要作用就是为新的重试Request添加验证头等内容                Request followUp = followUpRequest(response);                                if (followUp == null) {//如果一个请求得到的响应code是200,则followUp是为null的。                    if (!forWebSocket) { streamAllocation.release(); } return response; }                 closeQuietly(response.body());                //-------------------------------异常处理---------------------------------------------                 // if (++followUpCount > MAX_FOLLOW_UPS) {//超过最大的次数,抛出异常                  streamAllocation.release();                 throw new ProtocolException("Too many follow-up requests: " + followUpCount); }            if (followUp.body() instanceof UnrepeatableRequestBody) {                streamAllocation.release();            } throw new HttpRetryException("Cannot retry streamed HTTP body", response.code());         } if (!sameConnection(response, followUp.url())) {            streamAllocation.release();            streamAllocation = new StreamAllocation(client.connectionPool(), createAddress(followUp.url()), call, eventListener, callStackTrace);        } else if (streamAllocation.codec() != null) {            throw new IllegalStateException("Closing the body of " + response + " didn't close its backing stream. Bad interceptor?");        }        //--------------------------------------------------------------------------------        request = followUp;//得到处理之后的Request,以用来继续请求,在哪继续请求?肯定还是沿着拦截器链继续搞呗          priorResponse = response;//由priorResponse持有          }    } }
  该拦截器主要的作用就是重试及followup(这个followup咋翻译比较贴切呢?)。当一个请求由于各种原因失败了,如果是路由或者连接异常,则尝试恢复,否则,根据响应码(ResponseCode),followup方法会对Request进行再处理以得到新的Request,然后沿着拦截器链继续新的Request。当然,如果responseCode是200的话,这些过程就结束了。注意看注释。

3.4.2、BridgeInterceptor

咸蛋少扯,上图:


BridgeInterceptor的主要作用就是为请求(request before)添加请求头,为响应(Response Before)添加响应头。看源码:
 @Override public Response intercept(Chain chain) throws IOException {    Request userRequest = chain.request();    Request.Builder requestBuilder = userRequest.newBuilder();//----------------------request----------------------------------------------    RequestBody body = userRequest.body();    if (body != null) {      MediaType contentType = body.contentType();      if (contentType != null) {//添加Content-Type请求头        requestBuilder.header("Content-Type", contentType.toString());      }      long contentLength = body.contentLength();      if (contentLength != -1) {        requestBuilder.header("Content-Length", Long.toString(contentLength));        requestBuilder.removeHeader("Transfer-Encoding");      } else {        requestBuilder.header("Transfer-Encoding", "chunked");//分块传输        requestBuilder.removeHeader("Content-Length");      }    }    if (userRequest.header("Host") == null) {      requestBuilder.header("Host", hostHeader(userRequest.url(), false));    }    if (userRequest.header("Connection") == null) {      requestBuilder.header("Connection", "Keep-Alive");    }    // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing    // the transfer stream.    boolean transparentGzip = false;    if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {      transparentGzip = true;      requestBuilder.header("Accept-Encoding", "gzip");    }    List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());    if (!cookies.isEmpty()) {      requestBuilder.header("Cookie", cookieHeader(cookies));    }    if (userRequest.header("User-Agent") == null) {      requestBuilder.header("User-Agent", Version.userAgent());    }    Response networkResponse = chain.proceed(requestBuilder.build());//----------------------------------response----------------------------------------------    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());//保存cookie    Response.Builder responseBuilder = networkResponse.newBuilder()        .request(userRequest);    if (transparentGzip        && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))        && HttpHeaders.hasBody(networkResponse)) {      GzipSource responseBody = new GzipSource(networkResponse.body().source());      Headers strippedHeaders = networkResponse.headers().newBuilder()          .removeAll("Content-Encoding")//Content-Encoding、Content-Length不能用于Gzip解压缩          .removeAll("Content-Length")          .build();      responseBuilder.headers(strippedHeaders);      String contentType = networkResponse.header("Content-Type");      responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));    }    return responseBuilder.build();  }
这个拦截器的源码还是很简单的,不再详细叙述。

3.4.3、CacheInterceptor

在解析CacheInterceptor之前,先看一张关于Http缓存机制的图片(来源于网络):


先看一下缓存的响应头:
(本模块前两个图均来自于http://blog.csdn.net/y874961524/article/details/61419716,感谢)
几个相关的字段先解释一下(估计都知道):
Cache-control:标明缓存的最大存活时常;
Date:服务器告诉客户端,该资源的发送时间;
Expires:表示过期时间(该字段是1.0的东西,当cache-control和该字段同时存在的条件下,cache-control的优先级更高);
Last-Modified:服务器告诉客户端,资源的最后修改时间;
还有一个字段,这个图没给出,就是E-Tag:当前资源在服务器的唯一标识,可用于判断资源的内容是否被修改了。
除以上响应头字段以外,还需了解两个相关的Request请求头:If-Modified-since、If-none-Match。这两个字段是和Last-Modified、E-Tag配合使用的。大致流程如下:
服务器收到请求时,会在200 OK中回送该资源的Last-Modified和ETag头(服务器支持缓存的情况下才会有这两个头哦),客户端将该资源保存在cache中,并记录这两个属性。当客户端需要发送相同的请求时,根据Date + Cache-control来判断是否缓存过期,如果过期了,会在请求中携带If-Modified-Since和If-None-Match两个头。两个头的值分别是响应中Last-Modified和ETag头的值。服务器通过这两个头判断本地资源未发生变化,客户端不需要重新下载,返回304响应。
看源码之前,先看几个与CacheInterceptor相关的比较重要的几个类:

CacheStrategy是一个缓存策略类,该类告诉CacheInterceptor是使用缓存还是使用网络请求;
Cache是封装了实际的缓存操作;
DiskLruCache:Cache基于DiskLruCache;
下面看一下CacheInterceptor的源码:
@Override public Response intercept(Chain chain) throws IOException {    Response cacheCandidate = cache != null        ? cache.get(chain.request())//以request的url而来key,获取缓存        : null;    long now = System.currentTimeMillis();    //缓存策略类,该类决定了是使用缓存还是进行网络请求    CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();    Request networkRequest = strategy.networkRequest;//网络请求,如果为null就代表不用进行网络请求    Response cacheResponse = strategy.cacheResponse;//缓存响应,如果为null,则代表不使用缓存    if (cache != null) {//根据缓存策略,更新统计指标:请求次数、使用网络请求次数、使用缓存次数      cache.trackResponse(strategy);    }    //缓存不可用,关闭    if (cacheCandidate != null && cacheResponse == null) {      closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.    }    //如果既无网络请求可用,又没有缓存,则返回504错误    // If we're forbidden from using the network and the cache is insufficient, fail.    if (networkRequest == null && cacheResponse == null) {      return new Response.Builder()          .request(chain.request())          .protocol(Protocol.HTTP_1_1)          .code(504)          .message("Unsatisfiable Request (only-if-cached)")          .body(Util.EMPTY_RESPONSE)          .sentRequestAtMillis(-1L)          .receivedResponseAtMillis(System.currentTimeMillis())          .build();    }    // If we don't need the network, we're done.缓存可用,直接返回缓存    if (networkRequest == null) {      return cacheResponse.newBuilder()          .cacheResponse(stripBody(cacheResponse))          .build();    }    Response networkResponse = null;    try {      networkResponse = chain.proceed(networkRequest);//进行网络请求,得到网络响应    } finally {      // If we're crashing on I/O or otherwise, don't leak the cache body.      if (networkResponse == null && cacheCandidate != null) {        closeQuietly(cacheCandidate.body());      }    }    //HTTP_NOT_MODIFIED缓存有效,合并网络请求和缓存    // If we have a cache response too, then we're doing a conditional get.    if (cacheResponse != null) {      if (networkResponse.code() == HTTP_NOT_MODIFIED) {        Response response = cacheResponse.newBuilder()            .headers(combine(cacheResponse.headers(), networkResponse.headers()))            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())            .cacheResponse(stripBody(cacheResponse))            .networkResponse(stripBody(networkResponse))            .build();        networkResponse.body().close();        // Update the cache after combining headers but before stripping the        // Content-Encoding header (as performed by initContentStream()).        cache.trackConditionalCacheHit();        cache.update(cacheResponse, response);//更新缓存        return response;      } else {        closeQuietly(cacheResponse.body());      }    }    Response response = networkResponse.newBuilder()        .cacheResponse(stripBody(cacheResponse))        .networkResponse(stripBody(networkResponse))        .build();    if (cache != null) {      //有响应体 & 可缓存      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {        // Offer this request to the cache.        CacheRequest cacheRequest = cache.put(response);        return cacheWritingResponse(cacheRequest, response);//写缓存      }      if (HttpMethod.invalidatesCache(networkRequest.method())) {//判断缓存的有效性        try {          cache.remove(networkRequest);        } catch (IOException ignored) {          // The cache cannot be written.        }      }    }    return response;  }
上面源码中的注释已经解释的很清楚了,下面再简单的说一下流程:
根据缓存策略类返回的结果:
1、如果网络不可用并且无可用的有效缓存,则返回504错误;
2、继续,如果不需要网络请求,则直接使用缓存;
3、继续,如果需要网络可用,则进行网络请求;
4、继续,如果有缓存,并且网络请求返回HTTP_NOT_MODIFIED,说明缓存还是有效的,则合并网络响应和缓存结果。同时更新缓存;
5、继续,如果没有缓存,则写入新的缓存;
我们可以看到,CacheStrategy在CacheInterceptor中起到了很关键的作用。该类决定了是网络请求还是使用缓存。该类最关键的代码是getCandidate()方法:
  private CacheStrategy getCandidate() {      // No cached response.      if (cacheResponse == null) {//没有缓存,直接网络请求        return new CacheStrategy(request, null);      }      // Drop the cached response if it's missing a required handshake.      if (request.isHttps() && cacheResponse.handshake() == null) {//https,但没有握手,直接网络请求        return new CacheStrategy(request, null);      }      // If this response shouldn't have been stored, it should never be used      // as a response source. This check should be redundant as long as the      // persistence store is well-behaved and the rules are constant.      if (!isCacheable(cacheResponse, request)) {//不可缓存,直接网络请求        return new CacheStrategy(request, null);      }      CacheControl requestCaching = request.cacheControl();      if (requestCaching.noCache() || hasConditions(request)) {        //请求头nocache或者请求头包含If-Modified-Since或者If-None-Match        //请求头包含If-Modified-Since或者If-None-Match意味着本地缓存过期,需要服务器验证        //本地缓存是不是还能继续使用        return new CacheStrategy(request, null);      }      CacheControl responseCaching = cacheResponse.cacheControl();      if (responseCaching.immutable()) {//强制使用缓存        return new CacheStrategy(null, cacheResponse);      }      long ageMillis = cacheResponseAge();      long freshMillis = computeFreshnessLifetime();      if (requestCaching.maxAgeSeconds() != -1) {        freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));      }      long minFreshMillis = 0;      if (requestCaching.minFreshSeconds() != -1) {        minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());      }      long maxStaleMillis = 0;      if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {        maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());      }      //可缓存,并且ageMillis + minFreshMillis < freshMillis + maxStaleMillis      // (意味着虽过期,但可用,只是会在响应头添加warning)      if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {        Response.Builder builder = cacheResponse.newBuilder();        if (ageMillis + minFreshMillis >= freshMillis) {          builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");        }        long oneDayMillis = 24 * 60 * 60 * 1000L;        if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {          builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");        }        return new CacheStrategy(null, builder.build());//使用缓存      }      // Find a condition to add to the request. If the condition is satisfied, the response body      // will not be transmitted.      String conditionName;      String conditionValue;      //流程走到这,说明缓存已经过期了      //添加请求头:If-Modified-Since或者If-None-Match      //etag与If-None-Match配合使用      //lastModified与If-Modified-Since配合使用      //前者和后者的值是相同的      //区别在于前者是响应头,后者是请求头。      //后者用于服务器进行资源比对,看看是资源是否改变了。      // 如果没有,则本地的资源虽过期还是可以用的      if (etag != null) {        conditionName = "If-None-Match";        conditionValue = etag;      } else if (lastModified != null) {        conditionName = "If-Modified-Since";        conditionValue = lastModifiedString;      } else if (servedDate != null) {        conditionName = "If-Modified-Since";        conditionValue = servedDateString;      } else {        return new CacheStrategy(request, null); // No condition! Make a regular request.      }      Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();      Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);      Request conditionalRequest = request.newBuilder()          .headers(conditionalRequestHeaders.build())          .build();      return new CacheStrategy(conditionalRequest, cacheResponse);    }
大致流程如下:(if-else的关系呀)
1、没有缓存,直接网络请求;
2、如果是https,但没有握手,直接网络请求;
3、不可缓存,直接网络请求;
4、请求头nocache或者请求头包含If-Modified-Since或者If-None-Match,则需要服务器验证本地缓存是不是还能继续使用,直接网络请求;
5、可缓存,并且ageMillis + minFreshMillis < freshMillis + maxStaleMillis(意味着虽过期,但可用,只是会在响应头添加warning),则使用缓存;
6、缓存已经过期,添加请求头:If-Modified-Since或者If-None-Match,进行网络请求;

3.4.4、ConnectInterceptor(核心,连接池)

ConnectInterceptor器如其名,是一个连接相关的拦截器。这个拦截器是这几个拦截器里面代码最少的。但是少并不意味着很简单。先看一下ConnectIntercepor中比较重要的几个类及其含义:


RouteDataBase:这是一个关于路由信息的白名单和黑名单类,处于黑名单的路由信息会被避免不必要的尝试;
RealConnecton:Connect子类,主要实现连接的建立等工作;
ConnectionPool:连接池,实现连接的复用;

这里再说一下Connection和Stream的关系:Http1.x是1:1的关系,而Http2是1对多的关系。就是说一个http1.x连接只能被一个请求使用,而一个Http2连接是对应多个Stream的,多个Stream的意思是Http2连接支持并发请求,即一个连接可以被多个请求同时使用的。
还有,Http1.1的keep-alive机制的作用是保证连接使用完不关闭,当下一次请求与连接的Host相同的时候,连接可以直接使用,不用再次创建(节省资源,提高了性能)。

StreamAllocation:直译就是流分配。流是什么呢?我们知道Connection是一个连接远程服务器的物理Socket连接,而Stream则是基于Connection的逻辑Http 请求/响应对。StreamAllocation会通过ConnectPool获取或者新生成一个RealConnection来得到一个连接到Server的Connection连接,同时会生成一个HttpCodec用于下一个CallServerInterceptor,以完成最终的请求;
HttpCodec: Encodes HTTP requests and decodes HTTP responses。(源码注释哦)。针对不同的版本,OkHttp为我们提供了HttpCodec1(Http1.x)和HttpCodec2(Http2).
一句话概括就是:分配一个Connection和HttpCodec,为最终的请求做准备。
/** Opens a connection to the target server and proceeds to the next interceptor. */public final class ConnectInterceptor implements Interceptor {  public final OkHttpClient client;  public ConnectInterceptor(OkHttpClient client) {    this.client = client;  }  @Override public Response intercept(Chain chain) throws IOException {    RealInterceptorChain realChain = (RealInterceptorChain) chain;    Request request = realChain.request();    StreamAllocation streamAllocation = realChain.streamAllocation();    // We need the network to satisfy this request. Possibly for validating a conditional GET.    //我们需要网络来满足这个请求。可能是为了验证一个条件GET请求(缓存验证等)。    boolean doExtensiveHealthChecks = !request.method().equals("GET");    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);    RealConnection connection = streamAllocation.connection();    return realChain.proceed(request, streamAllocation, httpCodec, connection);  }}
代码量是不是很少?是的。表面上看起来很少,实际上大部分的功能都被封装到其他的类里面去了,此处只是调用。所以为了代码的可读性和可维护性,该封装的还是乖乖的封装吧。
核心代码就两行:
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks); RealConnection connection = streamAllocation.connection();
可以看出,主要的工作是由StreamAllocation完成。我们来看看这个StreamAllocation的newStream和connection()到底做了什么。
  public HttpCodec newStream(      OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {    int connectTimeout = chain.connectTimeoutMillis();    int readTimeout = chain.readTimeoutMillis();    int writeTimeout = chain.writeTimeoutMillis();    boolean connectionRetryEnabled = client.retryOnConnectionFailure();    try {      RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,          writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);      HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);      synchronized (connectionPool) {        codec = resultCodec;        return resultCodec;      }    } catch (IOException e) {      throw new RouteException(e);    }  }
可以看到,最关键的一步就是findHealthyConnection,这个方法的主要的作用就是找到一个可用的连接(如果连接不可用,这个过程会一直持续哦)。
  private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,      int writeTimeout, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks)      throws IOException {    while (true) {      RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,          connectionRetryEnabled);      // If this is a brand new connection, we can skip the extensive health checks.如果是一个新的连接,直接返回就好了      synchronized (connectionPool) {        if (candidate.successCount == 0) {          return candidate;        }      }      // Do a (potentially slow) check to confirm that the pooled connection is still good. If it      // isn't, take it out of the pool and start again.      if (!candidate.isHealthy(doExtensiveHealthChecks)) {//判断连接是否好使        noNewStreams();//连接不好使的话,移除连接池        continue;//不healthy,就一直持续的呀      }      return candidate;    }  }
上述代码还是很容易理解的,唯一让我有点费解的就是这个noNewsStream方法。刚开始看名字有点蒙圈。啥叫noNewStream嘞,看源码(其实应该先看findConnection的源码的,但是先搞懂这个地方,对后面的理解有益无害的):
public void noNewStreams() {    Socket socket;    Connection releasedConnection;    synchronized (connectionPool) {      releasedConnection = connection;      socket = deallocate(true, false, false);// noNewStreams,  released,  streamFinished核心方法      if (connection != null) releasedConnection = null;    }    closeQuietly(socket);//关闭socket    if (releasedConnection != null) {      eventListener.connectionReleased(call, releasedConnection);//监听回调    }  }
上述关键代码是deallocate:
 private Socket deallocate(boolean noNewStreams, boolean released, boolean streamFinished) {    assert (Thread.holdsLock(connectionPool));    //以noNewStreams为true, released为false, streamFinished为false;为例    if (streamFinished) {      this.codec = null;    }    if (released) {      this.released = true;    }    Socket socket = null;    if (connection != null) {      if (noNewStreams) {        //noNewStreams是RealConnection的属性,源码的注释是这么说的:        //如果为true,则这个连接就不会再创建新的Stream了,一旦设置成true,就会一直是true        //搜索整个源码,该属性设置的地方如下:        //evitAll:关闭和移除连接池中所有的空闲连接(如果连接空闲(即连接上的Stream数为0),则noNewStreams为true);        //pruneAndGetAllocationCount:移除内存泄漏的连接及获取连接的Stream分配数;        //streamFailed:Stream分配失败;        //综上,这个属性的作用是禁止无效连接创建新的Stream的        connection.noNewStreams = true;      }      if (this.codec == null && (this.released || connection.noNewStreams)) {        release(connection);//释放Connection承载的StreamAllocations资源(connection.allocations)        if (connection.allocations.isEmpty()) {          connection.idleAtNanos = System.nanoTime();          //connectionBecameIdle:通知线程池该连接是空闲连接,可以移除或者作为待移除对象。          if (Internal.instance.connectionBecameIdle(connectionPool, connection)) {            socket = connection.socket();          }        }        connection = null;      }    }    return socket;//返回待关闭的Socket对象  }
需要说的都写在了上面源码的注释里面了,不再多说了。
接着看findConnection方法,好吧,继续,源码有点长,不过我都给注释了,看起来应该也不会很难。
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,      boolean connectionRetryEnabled) throws IOException {    boolean foundPooledConnection = false;    RealConnection result = null;    Route selectedRoute = null;    Connection releasedConnection;    Socket toClose;    synchronized (connectionPool) {      //----------排除异常情况----------------      if (released) throw new IllegalStateException("released");      if (codec != null) throw new IllegalStateException("codec != null");      if (canceled) throw new IOException("Canceled");      // Attempt to use an already-allocated connection. We need to be careful here because our      // already-allocated connection may have been restricted from creating new streams.      releasedConnection = this.connection;      //这个方法的作用,与deallocate作用一样      //如果连接不能创建Stream,则释放资源,返回待关闭的close Socket      toClose = releaseIfNoNewStreams();      //经过releaseIfNoNewStreams,如果connection不为null,则连接是可用的      if (this.connection != null) {        // We had an already-allocated connection and it's good.        //存在可使用的已分配连接        result = this.connection;        releasedConnection = null;//为null值,则说明这个连接是有效的      }      if (!reportedAcquired) {        // If the connection was never reported acquired, don't report it as released!        releasedConnection = null;      }      if (result == null) {//没有可使用的连接,去连接池中找        // Attempt to get a connection from the pool.//首先通过ConnectionPool,Address,StreamAllocation从连接池获取连接,        // 连接池后面会单独讲解*************        Internal.instance.get(connectionPool, address, this, null);//ConnectionPool,Address,StreamAllocation,Route        if (connection != null) {          foundPooledConnection = true;          result = connection;        } else {          selectedRoute = route;        }      }    }    closeQuietly(toClose);    if (releasedConnection != null) {      eventListener.connectionReleased(call, releasedConnection);    }    if (foundPooledConnection) {      eventListener.connectionAcquired(call, result);    }    if (result != null) {      // If we found an already-allocated or pooled connection, we're done.      return result;//找到了一个已分配或者连接池中的连接,此过程结束,返回    }    //否则,我们需要一个路由信息,这是一个阻塞的操作    // If we need a route selection, make one. This is a blocking operation.    boolean newRouteSelection = false;    if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {      newRouteSelection = true;      routeSelection = routeSelector.next();    }    synchronized (connectionPool) {      if (canceled) throw new IOException("Canceled");      if (newRouteSelection) {        // Now that we have a set of IP addresses, make another attempt at getting a connection from        // the pool. This could match due to connection coalescing.        //提供更加全面的路由信息,再次从连接池中获取连接        List<Route> routes = routeSelection.getAll();        for (int i = 0, size = routes.size(); i < size; i++) {          Route route = routes.get(i);          Internal.instance.get(connectionPool, address, this, route);          if (connection != null) {            foundPooledConnection = true;            result = connection;            this.route = route;            break;          }        }      }      //*实在是没找到,只能生成新的连接******了      if (!foundPooledConnection) {        if (selectedRoute == null) {          selectedRoute = routeSelection.next();        }        // Create a connection and assign it to this allocation immediately. This makes it possible        // for an asynchronous cancel() to interrupt the handshake we're about to do.        route = selectedRoute;        refusedStreamCount = 0;        result = new RealConnection(connectionPool, selectedRoute);        acquire(result, false);//添加connection的StreamAllocation添加到connection.allocations集合中*****      }    }    // If we found a pooled connection on the 2nd time around, we're done.    //如果连接是从连接池中找到的,说明是可复用的。不是新生成的,因为新生成的连接,    // 需要去连接服务器之后才能可用呀    if (foundPooledConnection) {      eventListener.connectionAcquired(call, result);      return result;    }    // Do TCP + TLS handshakes. This is a blocking operation.//连接Server    result.connect(        connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled, call, eventListener);    routeDatabase().connected(result.route());//将路由信息添加到routeDatabase中。    Socket socket = null;    synchronized (connectionPool) {      reportedAcquired = true;      // Pool the connection.      Internal.instance.put(connectionPool, result);//将新生成的连接放入连接池中      // If another multiplexed connection to the same address was created concurrently, then      // release this connection and acquire that one.      //如果是一个http2连接,由于http2连接应具有多路复用特性,      // 因此,我们需要确保http2连接的多路复用特性      if (result.isMultiplexed()) {        //deduplicate:确保http2连接的多路复用特性,重复的连接将被剔除        socket = Internal.instance.deduplicate(connectionPool, address, this);        result = connection;      }    }    closeQuietly(socket);    eventListener.connectionAcquired(call, result);    return result;  }
上述代码加了很多注释,可以看一下。为了更加快速的了解其过程,画了一个流程图,跟着流程图来一步一步的解析(没有什么是一张图解决不了的,如果不能,那么就两张O(∩_∩)O)。
a)排除连接不可用情况
 private Socket releaseIfNoNewStreams() {    assert (Thread.holdsLock(connectionPool));    RealConnection allocatedConnection = this.connection;    if (allocatedConnection != null && allocatedConnection.noNewStreams) {      return deallocate(false, false, true);    }    return null;  }
这个方法是说如果连接处于nonewStream状态,则释放该连接。否则,该连接是可用的。关于noNewStream和deallocate方法前面已经解释的很清楚了。
b)判断连接是否可用
经过releaseIfNoNewStreams方法,如果connection不为null,则一定是可用的。
 //经过releaseIfNoNewStreams,如果connection不为null,则连接是可用的      if (this.connection != null) {        // We had an already-allocated connection and it's good.        //存在可使用的已分配连接        result = this.connection;        releasedConnection = null;//为null值,则说明这个连接是有效的      }
c)第一次连接池查找(没有提供路由信息)
Internal.instance.get(connectionPool, address, this, null);//ConnectionPool,Address,StreamAllocation,Route        if (connection != null) {          foundPooledConnection = true;          result = connection;        }
如果查找到了,则将查找到的连接赋值给result。
d)遍历路由表,进行二次查找
 List<Route> routes = routeSelection.getAll();        for (int i = 0, size = routes.size(); i < size; i++) {          Route route = routes.get(i);          Internal.instance.get(connectionPool, address, this, route);          if (connection != null) {            foundPooledConnection = true;            result = connection;            this.route = route;            break;          }        }
f)如果还是没找到,则只能创建新的连接了
result = new RealConnection(connectionPool, selectedRoute);        acquire(result, false);//添加connection的StreamAllocation添加到connection.allocations集合中*****
g)新的连接,连接服务器
// Do TCP + TLS handshakes. This is a blocking operation.//连接Server(connect方法涉及Socket的建立等)    result.connect(        connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled, call, eventListener);    routeDatabase().connected(result.route());//将路由信息添加到routeDatabase中。
h)新的连接放入线程池
 // Pool the connection.      Internal.instance.put(connectionPool, result);//将新生成的连接放入连接池中
i)如果连接是一个HTTP2连接,则需要确保多路复用的特性
 //如果是一个http2连接,由于http2连接应具有多路复用特性,      // 因此,我们需要确保http2连接的多路复用特性      if (result.isMultiplexed()) {        //deduplicate:确保http2连接的多路复用特性,重复的连接将被剔除        socket = Internal.instance.deduplicate(connectionPool, address, this);        result = connection;      }
在Connectinterceptor中,起到关键作用的就是ConnectionPool,既然这么关键我们就来看看这个连接池吧。
-------------------------------------------------------------------------------------------------------------------------------------------------------------
在目前的版本下,连接池默认是可以保持5个空闲的连接。这些空闲的连接如果超过5分钟不被使用,则将被连接池移除。
当然,这些默认的数值在未来的okhttp版本中,会被改变的。另外,这两个数值支持开发人员修改。
-------------------------------------------------------------------------------------------------------------------------------------------------------------
ConnectionPool中比较关键的几个点,线程池(ThreadPoolExecutor)、队列(Deque)、路由记录表;
线程池:用于支持连接池的cleanup任务,清除idle线程;
队列:存放待复用的连接;
路由记录表:前面已讲,不再叙述;
对于连接池,开发人员最感兴趣的肯定的:存、取、清除;
a)存
void put(RealConnection connection) {    assert (Thread.holdsLock(this));    if (!cleanupRunning) {      cleanupRunning = true;      executor.execute(cleanupRunnable);    }    connections.add(connection);  }
可以看到,在放入连接到connections(Deque)之前,可能是需要执行连接池的“清洁”任务的。连接存入连接池的操作很简单,主要看一下这个cleanUp到底做了些什么?
 long cleanup(long now) {    int inUseConnectionCount = 0;    int idleConnectionCount = 0;    RealConnection longestIdleConnection = null;    long longestIdleDurationNs = Long.MIN_VALUE;    // Find either a connection to evict, or the time that the next eviction is due.    synchronized (this) {      for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {        RealConnection connection = i.next();        // If the connection is in use, keep searching.        if (pruneAndGetAllocationCount(connection, now) > 0) {          inUseConnectionCount++;//线程池中处于使用状态的连接数          continue;        }        idleConnectionCount++;//处于空闲状态的连接数        // If the connection is ready to be evicted, we're done.        long idleDurationNs = now - connection.idleAtNanos;        //寻找空闲最久的那个连接        if (idleDurationNs > longestIdleDurationNs) {          longestIdleDurationNs = idleDurationNs;          longestIdleConnection = connection;        }      }       //空闲最久的那个连接      //如果空闲时间大于keepAliveDurationNs(默认5分钟)      //或者空闲的连接总数大于maxIdleConnections(默认5个)      //--->执行移除操作      if (longestIdleDurationNs >= this.keepAliveDurationNs          || idleConnectionCount > this.maxIdleConnections) {        // We've found a connection to evict. Remove it from the list, then close it below (outside        // of the synchronized block).        connections.remove(longestIdleConnection);      } else if (idleConnectionCount > 0) {        // A connection will be ready to evict soon.        return keepAliveDurationNs - longestIdleDurationNs;//空闲最久的那个连接的空闲时长与keepAliveDurationNs的差值      } else if (inUseConnectionCount > 0) {        // All connections are in use. It'll be at least the keep alive duration 'til we run again.        return keepAliveDurationNs;      } else {        // No connections, idle or in use.        cleanupRunning = false;        return -1;      }    }    closeQuietly(longestIdleConnection.socket());//关闭Socket    // Cleanup again immediately.    return 0;  }
这个方法根据两个指标还决定是否移除空闲时间最长的空闲连接:大于最大空闲值或者空闲连接数超过最大值,则移除空闲时间最长的控线连接。cleanUp方法的执行也依赖于另外一个比较重要的方法:pruneAndGetAllocationCount,该方法的作用是移除发生泄漏的StreamAllocation,统计连接中正在使用的StreamAllocation个数。这个方法的源码不看了,有兴趣的自行品尝吧。
b)取
 RealConnection get(Address address, StreamAllocation streamAllocation, Route route) {    assert (Thread.holdsLock(this));    for (RealConnection connection : connections) {      //isEligible判断一个连接(address+route对应的)      // 是否还能携带一个StreamAllocation。如果有,说明这个连接可用      if (connection.isEligible(address, route)) {//isEligible也是一个重要方法,最好看一下源码        streamAllocation.acquire(connection, true);//将StreamAllocation添加到connection.allocations中        return connection;      }    }    return null;  }
首先,判断address对应的Connection是否还能承载一个新的StreamAllocation,如果可以得话,我们就将这个streamAllocation添加到connection.allocations中。最后返回这个Connection。
c)移除
  public void evictAll() {    List<RealConnection> evictedConnections = new ArrayList<>();    synchronized (this) {      for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) {        RealConnection connection = i.next();        if (connection.allocations.isEmpty()) {          connection.noNewStreams = true;          evictedConnections.add(connection);          i.remove();        }      }    }    for (RealConnection connection : evictedConnections) {      closeQuietly(connection.socket());    }  }
这个就很简单了。不再叙述。

3.4.5、CallServerInterceptor

该拦截器就是利用HttpCodec完成最终请求的发送。

4、总结

okhttp是一个Http+Htttp2客户端,适用于Android + Java 应用。其整体的架构如下:
(此图来源于https://yq.aliyun.com/articles/78105?spm=5176.100239.blogcont78104.10.FlPFWr,感谢)

整体分析完之后,再看这个整体架构,感觉上图画的十分清晰。
云栖社区的这篇《OkHtp 3.7源码分析》写的相当不错。有时间的可以阅读以下。
原创粉丝点击