TensorFlow实现经典深度学习网络(6):TensorFlow实现基于LSTM的语言模型

来源:互联网 发布:linux新建脚本命令 编辑:程序博客网 时间:2024/04/30 11:04

TensorFlow实现经典深度学习网络(6):TensorFlow实现基于LSTM的语言模型


        循环神经网络(Recurrent Neural Networks,RNNs)出现于20世纪80年代,由于神经网络结构的进步和GPU上深度学习训练效率的突破,PNNs已经在众多自然语言处理(Natural Language Processing, NLP)中取得了巨大成功以及广泛应用。RNNs对时间序列数据非常有效,其每个神经元可通过内部组件保存之前输入的信息。RNNs已经被在实践中证明对NLP是非常成功的,如词向量表达、语句合法性检查、词性标注等。在RNNs中,目前使用最广泛最成功的模型便是LSTMs模型,该模型通常比Vanilla RNNs能够更好地对长短时依赖进行表达,该模型相对于一般的RNNs,只是在隐藏层做了手脚。对于LSTMs,后面会进行详细地介绍。下面对RNNs在NLP中的应用进行简单的介绍。

深度语言模型简介:

递归神经网络RNN

• 有2类

    • 时间递归神经网络(Recurrent Neural Network)
        • 针对时间序列

    • 结构递归神经网络(Recursive Neural Network)
        • 针对树状结构

• 优化方法

    • 时序后向传播(Back propagation through time)

• 长时记忆/递归深度问题

    • 梯度爆炸(Gradient exploding) ——梯度剪切

    • 梯度消失(Gradient vanishing) ——特殊设计

        递归网络类似于数据结构中的树形结构,且其每层之间会有共享参数。而最为常用的循环神经网络,它的每层的结构相同,且每层之间参数完全共享。RNN的缩略图和展开图如下:


时序后向传播(BPTT)

• 传统后向传播(BP)在时间序列上的扩展

• t时刻的梯度是前t-1时刻所有梯度的累积

• 时间越长,梯度消失越严重

朴素Vanilla-RNN存在的问题

• 单层神经网络在时间上的扩展

• t-1时刻的隐层状态(Hidden state)会参与t时刻输出的计算

• 严重的梯度消失问题


本文主要使用的为LSTM长短时记忆模型( Long Short-Term Memory )

• Hochreiter & Schmidhuber 于1997提出

• 有效捕捉长时记忆(Long dependency)

• 包含4个神经元组

    • 1个记忆神经元(Memory cell)

    • 3个控制门神经元

    • 输入门(Input gate)

    • 忘记门(Forget gate)

    • 输出门(Output gate)


        为了解决原始RNN网络结构存在的“vanishing gradient”问题,前辈们设计了LSTM这种新的网络结构。但从本质上来讲,LSTM是一种特殊的循环神经网络,其和RNN的区别在于,对于特定时刻t,隐藏层输出st的计算方式不同。故对LSTM网络的训练的思路与RNN类似,仅前向传播关系式不同而已。值得一提的是,在对LSTM网络进行训练时,cell state c[0]和hidden state s[0]都是随机初始化得到的。LSTM(或者其他gated RNNs)是在标准RNN 的基础上装备了若干个控制数级(magnitude)的gates。可以理解成神经网络(RNN整体)中加入其他神经网络(gates),而这些gates只是控制数级,控制信息的流动量。对于LSTM网络结构相关的理论,请参考点击打开链接.

        在对LSTM有所了解后,我们就可以搭建网络了。首先需要下载PTB数据集并解压,将其放在自己的工程目录下,点此下载PTB数据集。其次下载TensorFlow Models库,进入models/tutorials/rnn/ptb文件,将reader.py拷贝到自己的工程目录下,点此下载Models库。以下代码是根据本人对LSTM网络的理解和现有资源(《TensorFlow实战》、TensorFlow的开源实现等)整理而成,并根据自己认识添加了注释。代码注释若有错误请指正。

# -*- coding: utf-8 -*-import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'# 导入常用库,载入TensorFlowimport timeimport numpy as npimport tensorflow as tfimport reader# 定义语言模型处理输入数据的class,PTBInputclass PTBInput(object):  def __init__(self, config, data, name=None):    self.batch_size = batch_size = config.batch_size    self.num_steps = num_steps = config.num_steps    self.epoch_size = ((len(data) // batch_size) - 1) // num_steps    self.input_data, self.targets = reader.ptb_producer(        data, batch_size, num_steps, name=name)# 定义语言模型的class,PTBModelsclass PTBModel(object):  def __init__(self, is_training, config, input_):    self._input = input_    batch_size = input_.batch_size    num_steps = input_.num_steps    size = config.hidden_size    vocab_size = config.vocab_size    # 设置LSTM单元    def lstm_cell():      return tf.contrib.rnn.BasicLSTMCell(          size, forget_bias=0.0, state_is_tuple=True)    attn_cell = lstm_cell    if is_training and config.keep_prob < 1:      def attn_cell():        return tf.contrib.rnn.DropoutWrapper(            lstm_cell(), output_keep_prob=config.keep_prob)    cell = tf.contrib.rnn.MultiRNNCell(        [attn_cell() for _ in range(config.num_layers)], state_is_tuple=True)    self._initial_state = cell.zero_state(batch_size, tf.float32)    # 创建网络的词嵌入embedding部分    with tf.device("/cpu:0"):      embedding = tf.get_variable(          "embedding", [vocab_size, size], dtype=tf.float32)      inputs = tf.nn.embedding_lookup(embedding, input_.input_data)    if is_training and config.keep_prob < 1:      inputs = tf.nn.dropout(inputs, config.keep_prob)    # 定义输出outputs    outputs = []    state = self._initial_state    with tf.variable_scope("RNN"):      for time_step in range(num_steps):        if time_step > 0: tf.get_variable_scope().reuse_variables()        (cell_output, state) = cell(inputs[:, time_step, :], state)        outputs.append(cell_output)    # 将output的内容用tf.concat串接,并转为一维向量    # Softmax层    output = tf.reshape(tf.concat(outputs, 1), [-1, size])    softmax_w = tf.get_variable(        "softmax_w", [size, vocab_size], dtype=tf.float32)    softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=tf.float32)    logits = tf.matmul(output, softmax_w) + softmax_b    loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(        [logits],        [tf.reshape(input_.targets, [-1])],        [tf.ones([batch_size * num_steps], dtype=tf.float32)])    self._cost = cost = tf.reduce_sum(loss) / batch_size    self._final_state = state    if not is_training:      return    # 定义学习速率变量lr,并设为不可训练    # 获取全部可训练的参数    self._lr = tf.Variable(0.0, trainable=False)    tvars = tf.trainable_variables()    grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),                                      config.max_grad_norm)    optimizer = tf.train.GradientDescentOptimizer(self._lr)    self._train_op = optimizer.apply_gradients(        zip(grads, tvars),        global_step=tf.contrib.framework.get_or_create_global_step())    # 控制学习速率    self._new_lr = tf.placeholder(        tf.float32, shape=[], name="new_learning_rate")    self._lr_update = tf.assign(self._lr, self._new_lr)  def assign_lr(self, session, lr_value):    session.run(self._lr_update, feed_dict={self._new_lr: lr_value})  # 定义property,将返回变量设为只读,防止修改变量引发的问题  @property  def input(self):    return self._input  @property  def initial_state(self):    return self._initial_state  @property  def cost(self):    return self._cost  @property  def final_state(self):    return self._final_state  @property  def lr(self):    return self._lr  @property  def train_op(self):    return self._train_op# 定义不同大小的模型的参数class SmallConfig(object):  init_scale = 0.1  learning_rate = 1.0  max_grad_norm = 5  num_layers = 2  num_steps = 20  hidden_size = 200  max_epoch = 4  max_max_epoch = 13  keep_prob = 1.0  lr_decay = 0.5  batch_size = 20  vocab_size = 10000class MediumConfig(object):  init_scale = 0.05  learning_rate = 1.0  max_grad_norm = 5  num_layers = 2  num_steps = 35  hidden_size = 650  max_epoch = 6  max_max_epoch = 39  keep_prob = 0.5  lr_decay = 0.8  batch_size = 20  vocab_size = 10000class LargeConfig(object):  init_scale = 0.04  learning_rate = 1.0  max_grad_norm = 10  num_layers = 2  num_steps = 35  hidden_size = 1500  max_epoch = 14  max_max_epoch = 55  keep_prob = 0.35  lr_decay = 1 / 1.15  batch_size = 20  vocab_size = 10000class TestConfig(object):  init_scale = 0.1  learning_rate = 1.0  max_grad_norm = 1  num_layers = 1  num_steps = 2  hidden_size = 2  max_epoch = 1  max_max_epoch = 1  keep_prob = 1.0  lr_decay = 0.5  batch_size = 20  vocab_size = 10000# 定义训练一个epoch数据的函数,记录当前时间、初始化损失loss、迭代数iters# 创建输出字典表fetchesdef run_epoch(session, model, eval_op=None, verbose=False):  start_time = time.time()  costs = 0.0  iters = 0  state = session.run(model.initial_state)  fetches = {      "cost": model.cost,      "final_state": model.final_state,  }  if eval_op is not None:    fetches["eval_op"] = eval_op  for step in range(model.input.epoch_size):    feed_dict = {}    for i, (c, h) in enumerate(model.initial_state):      feed_dict[c] = state[i].c      feed_dict[h] = state[i].h    vals = session.run(fetches, feed_dict)    cost = vals["cost"]    state = vals["final_state"]    costs += cost    iters += model.input.num_steps    if verbose and step % (model.input.epoch_size // 10) == 10:      print("%.3f perplexity: %.3f speed: %.0f wps" %            (step * 1.0 / model.input.epoch_size, np.exp(costs / iters),             iters * model.input.batch_size / (time.time() - start_time)))  return np.exp(costs / iters)# 使用reader.ptb_raw_data直接读取解压后的数据,得到训练数据、验证数据、测试数据raw_data = reader.ptb_raw_data('simple-examples/data/')train_data, valid_data, test_data, _ = raw_dataconfig = SmallConfig()eval_config = SmallConfig()eval_config.batch_size = 1eval_config.num_steps = 1# 创建默认Graph,设置参数的初始化器with tf.Graph().as_default():  initializer = tf.random_uniform_initializer(-config.init_scale,                                              config.init_scale)  # 创建训练模型m  with tf.name_scope("Train"):    train_input = PTBInput(config=config, data=train_data, name="TrainInput")    with tf.variable_scope("Model", reuse=None, initializer=initializer):      m = PTBModel(is_training=True, config=config, input_=train_input)  # 验证模型  with tf.name_scope("Valid"):    valid_input = PTBInput(config=config, data=valid_data, name="ValidInput")    with tf.variable_scope("Model", reuse=True, initializer=initializer):      mvalid = PTBModel(is_training=False, config=config, input_=valid_input)  # 测试模型  with tf.name_scope("Test"):    test_input = PTBInput(config=eval_config, data=test_data, name="TestInput")    with tf.variable_scope("Model", reuse=True, initializer=initializer):      mtest = PTBModel(is_training=False, config=eval_config,                       input_=test_input)  # 使用tf.train.Supervisor()创建训练管理器sv  # 使用sv.managed_session()创建默认session  # 执行训练多个epoch数据的循环  # 完成全部训练后,计算并输出模型在测试集上的perplexity  sv = tf.train.Supervisor()  with sv.managed_session() as session:    for i in range(config.max_max_epoch):      lr_decay = config.lr_decay ** max(i + 1 - config.max_epoch, 0.0)      m.assign_lr(session, config.learning_rate * lr_decay)      print("Epoch: %d Learning rate: %.3f" % (i + 1, session.run(m.lr)))      train_perplexity = run_epoch(session, m, eval_op=m.train_op,                                   verbose=True)      print("Epoch: %d Train Perplexity: %.3f" % (i + 1, train_perplexity))      valid_perplexity = run_epoch(session, mvalid)      print("Epoch: %d Valid Perplexity: %.3f" % (i + 1, valid_perplexity))    test_perplexity = run_epoch(session, mtest)    print("Test Perplexity: %.3f" % test_perplexity)

运行程序,我们会看到如下的程序显示,这就是SmallConfig小型模型的最后结果:

Epoch: 12 Learning rate: 0.0040.004 perplexity: 61.806 speed: 3252 wps0.104 perplexity: 45.104 speed: 3253 wps0.204 perplexity: 49.345 speed: 3254 wps0.304 perplexity: 47.315 speed: 3253 wps0.404 perplexity: 46.501 speed: 3252 wps0.504 perplexity: 45.829 speed: 3253 wps0.604 perplexity: 44.332 speed: 3253 wps0.703 perplexity: 43.706 speed: 3253 wps0.803 perplexity: 42.985 speed: 3253 wps0.903 perplexity: 41.538 speed: 3253 wpsEpoch: 12 Train Perplexity: 40.693Epoch: 12 Valid Perplexity: 119.818Epoch: 13 Learning rate: 0.0020.004 perplexity: 61.564 speed: 3245 wps0.104 perplexity: 44.918 speed: 3253 wps0.204 perplexity: 49.157 speed: 3252 wps0.304 perplexity: 47.141 speed: 3252 wps0.404 perplexity: 46.333 speed: 3252 wps0.504 perplexity: 45.665 speed: 3252 wps0.604 perplexity: 44.176 speed: 3252 wps0.703 perplexity: 43.552 speed: 3252 wps0.803 perplexity: 42.834 speed: 3252 wps0.903 perplexity: 41.390 speed: 3252 wpsEpoch: 13 Train Perplexity: 40.547Epoch: 13 Valid Perplexity: 119.663Test Perplexity: 113.717
           至此,TensorFlow实现LSTM的工作就算完成了,读者若有兴趣,可以自行测试中型模型和大型模型,可以更好的理解LSTM语言模型。在后续工作中,我将继续为大家展现TensorFlow和深度学习网络带来的无尽乐趣,我将和大家一起探讨深度学习的奥秘。当然,如果你感兴趣,我的Weibo将与你一起分享最前沿的人工智能、机器学习、深度学习与计算机视觉方面的技术。




阅读全文
0 0
原创粉丝点击