3用于MNIST的卷积神经网络-3.7学习率与权重初始化对网络性能的影响分析

来源:互联网 发布:qq农牧场辅助软件 编辑:程序博客网 时间:2024/05/16 09:35

原文:http://www.studyai.com/article/73a1d3b70458410e

下面我们贴出使用AdamOptimizer优化器时不同的学习率下网络的性能曲线(关于详细分析,请大家到课程中心去听对应的分析)

  • lr=0.0001

这里写图片描述


  • lr=0.001
    这里写图片描述

  • lr=0.01
    这里写图片描述

  • lr=0.1(我们在这个学习率下运行四遍学习过程,由于网络每次的随机起始状态都不一样,所以会得到非常不一样的结果:有时收敛,有时不收敛)
    这里写图片描述

  • lr=0.5(一次都没收敛)
    这里写图片描述

对前面的实验做一个总结
这里写图片描述


这里写图片描述


这里写图片描述


这里写图片描述

这里写图片描述

这里写图片描述
原代码如下,网络结构不变,只要修改学习率参数就可以了

#-*- coding:utf-8 -*-#实现简单卷积神经网络对MNIST数据集进行分类:conv2d + activation + pool + fcimport csvimport tensorflow as tfimport osfrom tensorflow.examples.tutorials.mnist import input_dataos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'# 设置算法超参数learning_rate_init = 0.001training_epochs = 1batch_size = 100display_step = 10# Network Parametersn_input = 784 # MNIST data input (img shape: 28*28)n_classes = 10 # MNIST total classes (0-9 digits)#根据指定的维数返回初始化好的指定名称的权重 Variabledef WeightsVariable(shape, name_str, stddev=0.1):    initial = tf.random_normal(shape=shape, stddev=stddev, dtype=tf.float32)    # initial = tf.truncated_normal(shape=shape, stddev=stddev, dtype=tf.float32)    return tf.Variable(initial, dtype=tf.float32, name=name_str)#根据指定的维数返回初始化好的指定名称的偏置 studyai.comdef BiasesVariable(shape, name_str, stddev=0.00001):    initial = tf.random_normal(shape=shape, stddev=stddev, dtype=tf.float32)    # initial = tf.constant(stddev, shape=shape)    return tf.Variable(initial, dtype=tf.float32, name=name_str)# 2维卷积层(conv2d+bias)的封装def Conv2d(x, W, b, stride=1, padding='SAME'):    with tf.name_scope('Wx_b'):        y = tf.nn.conv2d(x, W, strides=[1, stride, stride, 1], padding=padding)        y = tf.nn.bias_add(y, b)    return y#非线性激活层的封装studyai.comdef Activation(x, activation=tf.nn.relu, name = 'relu'):    with tf.name_scope(name):        y = activation(x)    return y# 2维池化层pool的封装def Pool2d(x, pool= tf.nn.max_pool, k=2, stride=2):    return pool(x, ksize=[1, k, k, 1], strides=[1, stride, stride, 1], padding='VALID')# 全连接层activate(wx+b)的封装studyai.comdef FullyConnected(x, W, b, activate=tf.nn.relu, act_name='relu'):    with tf.name_scope('Wx_b'):        y = tf.matmul(x, W)        y = tf.add(y, b)    with tf.name_scope(act_name):        y = activate(y)    return y#通用的评估函数,用来评估模型在给定的数据集上的损失和准确率def EvaluateModelOnDataset(sess, images, labels):    n_samples = images.shape[0]    per_batch_size = 100    loss = 0    acc = 0    # 样本量比较少的时候,一次性评估完毕;否则拆成若干个批次评估,主要是防止内存不够用    if (n_samples <= per_batch_size):        batch_count = 1        loss, acc = sess.run([cross_entropy_loss, accuracy],                             feed_dict={X_origin: images,                                        Y_true: labels,                                        learning_rate: learning_rate_init})    else:        batch_count = int(n_samples / per_batch_size)        batch_start = 0        for idx in range(batch_count):            batch_loss, batch_acc = sess.run([cross_entropy_loss, accuracy],                                           feed_dict={X_origin: images[batch_start:batch_start + per_batch_size, :],                                                      Y_true: labels[batch_start:batch_start + per_batch_size, :],                                                      learning_rate: learning_rate_init})            batch_start += per_batch_size            # 累计所有批次上的损失和准确率            loss += batch_loss            acc += batch_acc    # 返回平均值studyai.com    return loss / batch_count, acc / batch_count#调用上面写的函数构造计算图with tf.Graph().as_default():    # 计算图输入    with tf.name_scope('Inputs'):        X_origin = tf.placeholder(tf.float32, [None, n_input], name='X_origin')        Y_true = tf.placeholder(tf.float32, [None, n_classes], name='Y_true')        #把图像数据从N*784的张量转换为N*28*28*1的张量        X_image = tf.reshape(X_origin, [-1, 28, 28, 1])    # 计算图前向推断过程studyai.com    with tf.name_scope('Inference'):        # 第一个卷积层(conv2d + biase)        with tf.name_scope('Conv2d'):            conv1_kernels_num = 5            weights = WeightsVariable(shape=[5, 5, 1, conv1_kernels_num], name_str='weights')            biases = BiasesVariable(shape=[conv1_kernels_num], name_str='biases')            conv_out = Conv2d(X_image, weights, biases, stride=1, padding='VALID')        #非线性激活层studyai.com        with tf.name_scope('Activate'):            activate_out = Activation(conv_out, activation=tf.nn.relu, name='relu')        # 第一个池化层(max pool 2d)        with tf.name_scope('Pool2d'):            pool_out = Pool2d(activate_out, pool=tf.nn.max_pool, k=2, stride=2)        #将二维特征图变换为一维特征向量studyai.com        with tf.name_scope('FeatsReshape'):            features = tf.reshape(pool_out, [-1, 12 * 12 * conv1_kernels_num])        # 第一个全连接层(fully connected layer)        with tf.name_scope('FC_Linear'):            weights = WeightsVariable(shape=[12 * 12 * conv1_kernels_num, n_classes], name_str='weights')            biases = BiasesVariable(shape=[n_classes], name_str='biases')            Ypred_logits = FullyConnected(features, weights, biases,                                          activate=tf.identity, act_name='identity')    # 定义损失层(loss layer)    with tf.name_scope('Loss'):        cross_entropy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(            labels=Y_true, logits=Ypred_logits))    # 定义优化训练层(train layer)studyai.com    with tf.name_scope('Train'):        learning_rate = tf.placeholder(tf.float32)        optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)        trainer = optimizer.minimize(cross_entropy_loss)    # 定义模型评估层(evaluate layer)    with tf.name_scope('Evaluate'):        correct_pred = tf.equal(tf.argmax(Ypred_logits, 1), tf.argmax(Y_true, 1))        accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))    # 添加所有变量的初始化节点studyai.com    init = tf.global_variables_initializer()    print('把计算图写入事件文件,在TensorBoard里面查看')    summary_writer = tf.summary.FileWriter(logdir='logs/excise313/', graph=tf.get_default_graph())    summary_writer.close()    # 导入 MNIST data    mnist = input_data.read_data_sets("../MNIST_data/", one_hot=True)    #将评估结果保存到文件    results_list = list()    # 写入参数配置    results_list.append(['learning_rate', learning_rate_init,                         'training_epochs', training_epochs,                         'batch_size', batch_size,                         'display_step', display_step,                         'conv1_kernels_num',conv1_kernels_num])    results_list.append(['train_step', 'train_loss', 'validation_loss',                         'train_step', 'train_accuracy', 'validation_accuracy'])    # 启动计算图    with tf.Session() as sess:        sess.run(init)        total_batches = int(mnist.train.num_examples / batch_size)        print("Per batch Size: ", batch_size)        print("Train sample Count: ", mnist.train.num_examples)        print("Total batch Count: ", total_batches)        training_step = 0  #记录模型被训练的步数        # 训练指定轮数,每一轮所有训练样本都要过一遍        for epoch in range(training_epochs):            # 每一轮都要把所有的batch跑一边            for batch_idx in range(total_batches):                # 取出数据                batch_x, batch_y = mnist.train.next_batch(batch_size)                # 运行优化器训练节点 (backprop)                sess.run(trainer, feed_dict={X_origin: batch_x,                                             Y_true: batch_y,                                             learning_rate: learning_rate_init})                # 每调用一次训练节点,training_step就加1,最终==training_epochs*total_batch                training_step += 1                #每训练display_step次,计算当前模型的损失和分类准确率                if training_step % display_step == 0:                    # 计算当前模型在目前(最近)见过的display_step个batchsize的训练集上的损失和分类准确率                    start_idx = max(0, (batch_idx-display_step)*batch_size)                    end_idx = batch_idx*batch_size                    train_loss, train_acc = EvaluateModelOnDataset(sess,                                                        mnist.train.images[start_idx:end_idx, :],                                                        mnist.train.labels[start_idx:end_idx, :])                    print("Training Step: " + str(training_step) +                          ", Training Loss= " + "{:.6f}".format(train_loss) +                          ", Training Accuracy= " + "{:.5f}".format(train_acc))                    # 计算当前模型在验证集的损失和分类准确率                    validation_loss, validation_acc = EvaluateModelOnDataset(sess,                                                        mnist.validation.images,                                                        mnist.validation.labels)                    print("Training Step: " + str(training_step) +                          ", Validation Loss= " + "{:.6f}".format(validation_loss) +                          ", Validation Accuracy= " + "{:.5f}".format(validation_acc))                    # 将评估结果保存到文件                    results_list.append([training_step, train_loss, validation_loss,                                         training_step, train_acc, validation_acc])        print("训练完毕!")        #计算指定数量的测试集上的准确率        test_samples_count = mnist.test.num_examples        test_loss, test_accuracy = EvaluateModelOnDataset(sess, mnist.test.images, mnist.test.labels)        print("Testing Samples Count:", test_samples_count)        print("Testing Loss:", test_loss)        print("Testing Accuracy:", test_accuracy)        results_list.append(['test step', 'loss', test_loss, 'accuracy', test_accuracy])        # 将评估结果保存到文件        results_file = open('evaluate_results/evaluate_results.csv', 'w', newline='')        csv_writer = csv.writer(results_file, dialect='excel')        for row in results_list:            csv_writer.writerow(row)
阅读全文
0 0