使用复述,实现分布式锁及其优化

来源:互联网 发布:java redis分布式锁 编辑:程序博客网 时间:2024/04/29 17:31

                                   使用复述,实现分布式锁及其优化

目前实现分布式锁的方式主要有数据库,复述和管理员三种,本文主要阐述利用复述的相关命令来实现分布式锁。

相关复述,命令

SETNX

如果当前中没有值,则将其设置为并返回1,否则返回0。

到期

设置为秒后自动过期。

GETSET

的值设置为,并返回其原来的旧值。如果原来没有旧值,则返回零。

EVALEVALSHA

复述,2.6之后支持的功能,可以将一段lua脚本发送到复述,服务器运行。

起,分布式锁初探

利用SETNX命令的原子性,我们可以简单的实现一个初步的分布式锁(这里原理就不详述了,直接上伪代码):



布尔tryLock(字符串键,int lockSeconds){

如果(SETNX键“1”= = 1){

关键lockSeconds到期

还真

其他} {

返回假

}

}

布尔解锁(String键){

DEL键

}


tryLock是一个非阻塞的分布式锁方法,在获得锁失败后会立即返回。如果需要一个阻塞式的锁方法,可以将tryLock方法包装为轮询(以一定的时间间隔来轮询,这很重要,否则复述,会吃不消!)。

此种方法看似没有什么问题,但其实则有一个漏洞:在加锁的过程中,客户端顺序的向复述,服务器发送了SETNX和到期命令,那么假设在SETNX命令执行完成之后,在到期命令发出去之前客户端发生崩溃(或客户端与复述,服务器的网络连接突然断掉),导致过期命令没有得到执行,其他客户端将会发生永久死锁!

承——分布式锁的改进

2017-11-01更新:

此方法解锁存在漏洞,具体见本后最后的追加内容。

为解决上面提出的问题,可以在加锁时在关键中存储这个锁过期的时间(当前客户端时间戳+锁时间),然后在获取锁失败时,取出价值与当前客户端时间进行比较,如果确定是已经过期的锁,则可以确认发生了上面描述的错误情况,此时可以使用▽清掉这个键,然后再重新尝试去获得这个锁。可以吗?当然不可以!如果没办法保证DEL操作和下次SETNX操作之间的原子性,则还是会产生一个竞态条件,比如这样:



C1 DEL键

C1 SETNX关键< expireTime >

C2 DEL键

C2 SETNX关键< expireTime >


当复述,服务器收到这样的指令序列时,C1和C2的SETNX都同时返回了1,此时C1和C2都认为自己拿到了锁,这种情况明显是不符合预期的。

为解决这个问题,复述的GETSET命令就派上用场了。客户端可以使用GETSET命令去设置自己的过期时间,然后得到的返回值与之前买到的返回值进行比较,如果不同,则表示这个过期的锁被其他客户端抢占了(此时GETSET命令其实已经生效,也就是关键中说的过期时间已经被修改,不过此误差很小,可以忽略不计)。

根据上面的分析思路,可以得出一个改进后的分布式锁,这里直接给出Java的实现代码:



公共 RedisLock {

私人 静态 最后日志记录器= LoggerFactory.getLogger(RedisLock.class);

私人 最后StringRedisTemplate StringRedisTemplate;

私人 最后 字节[]lockKey;

公共 RedisLock(StringRedisTemplate StringRedisTemplate,字符串lockKey) {

。 stringRedisTemplate = stringRedisTemplate;

。 lockKey = lockKey.getBytes();

}

私人 布尔 tryLock(RedisConnection康涅狄格州,intlockSeconds) 抛出异常{

nowTime = System.currentTimeMillis();

expireTime = nowTime + lockSeconds *1000年+1000年;/ /容忍不同服务器时间有1秒内的误差

如果(conn.setNX(lockKey longToBytes(expireTime))){

conn.expire(lockKey lockSeconds);

返回 真正的;

}其他的{

字节[]oldValue = conn.get(lockKey);

如果(oldValue ! =& & bytesToLong(oldValue)< nowTime){

/ /这个锁已经过期了,可以获得它

/ / PS:如果setNX和到期之间客户端发生崩溃,可能会出现这样的情况

字节[]oldValue2 = conn.getSet(lockKey longToBytes(expireTime));

如果(数组。 =(oldValue oldValue2)){

/ /获得了锁

conn.expire(lockKey lockSeconds);

返回 真正的;

}其他的{

/ /被别人抢占了锁(此时已经修改了lockKey中的值,不过误差很小可以忽略)

返回 ;

}

}

}

返回 ;

}

/ * *

*尝试获得锁,成功返回真,如果失败或异常立即返回错误的

*

*@paramlockSeconds加锁的时间(秒),超过这个时间后锁会自动释放

* /

公共 布尔 tryLock(最后 intlockSeconds) {

返回stringRedisTemplate.execute(RedisCallback <布尔>(){

@Override

公共布尔doInRedis(RedisConnection康涅狄格州) 抛出DataAccessException{

试一试{

返回tryLock(康涅狄格州,lockSeconds);

}(异常e){

logger.error(“tryLock错误”,e);

返回 ;

}

}

});

}

/ * *

*轮询的方式去获得锁,成功返回真,超过轮询次数或异常返回错误的

*

*@paramlockSeconds加锁的时间(秒),超过这个时间后锁会自动释放

*@paramtryIntervalMillis轮询的时间间隔(毫秒)

*@parammaxTryCount最大的轮询次数

* /

公共 布尔 tryLock(最后 intlockSeconds,最后 tryIntervalMillis,最后 intmaxTryCount) {

返回stringRedisTemplate.execute(RedisCallback <布尔>(){

@Override

公共布尔doInRedis(RedisConnection康涅狄格州) 抛出DataAccessException{

inttryCount =0;

(真正的){

如果(+ + tryCount > = maxTryCount){

/ /获取锁超时

返回 ;

}

试一试{

如果(tryLock(康涅狄格州,lockSeconds)){

返回 真正的;

}

}(异常e){

logger.error(“tryLock错误”,e);

返回 ;

}

试一试{

thread . sleep(tryIntervalMillis);

}(InterruptedException e){

logger.error(“tryLock打断了”,e);

返回 ;

}

}

}

});

}

/ * *

*如果加锁后的操作比较耗时,调用方其实可以在解锁前根据时间判断下锁是否已经过期

*如果已经过期可以不用调用,减少一次请求

* /

公共 无效 解锁() {

stringRedisTemplate.delete(字符串(lockKey));

}

公共 字节[]longToBytes(值){

ByteBuffer缓冲= ByteBuffer.allocate(长。 尺寸/ Byte.SIZE);

buffer.putLong(价值);

返回buffer.array();

}

公共 bytesToLong(字节[]字节) {

如果(字节。 长度! =长。 尺寸/ Byte.SIZE){

IllegalArgumentException(“错误的字节长度!”);

}

返回ByteBuffer.wrap(字节).getLong();

}

}


转——分布式锁的优化

2017-11-01更新:

此方法解锁存在漏洞,具体见本后最后的追加内容。

以上的分布式锁实现逻辑已经较为复杂,涉及到了较多的复述,命令,并使得每一次尝试加锁的过程都会有至少2次的复述,命令执行,这也就意味着至少两次与复述,服务器的网络通信。而添加后面复杂逻辑的原因只是因为SETNX与到期这两条命令执行的原子性无法得到保证。(有些同学会提到复述的管道特性,此处明显不适用,因为第二条指令的执行以来与第一条执行的结果,管道无法实现)

另外,上面的分布式锁还有一个问题,那就是服务器之间时间同步的问题。在分布式场景中,多台服务器之间的时间做到同步是非常困难的,所以在代码中我加了1秒的时间容错,但依赖服务器时间的同步还是可能会不靠谱的。

从复述,2.6开始,客户端可以直接向复述,服务器提交Lua脚本,也就是说可以直接在复述,服务器来执行一些较复杂的逻辑,而此脚本的提交对于客户端来说是相对原子性的。这恰好解决了我们的问题!

我们可以用一个这样的lua脚本来描述加锁的逻辑(关于脚本的提交命令和复述的相关规则可以看这里):



如果(redis.call(“setnx”、钥匙(1],ARGV[1)= =1)然后

redis.call(“过期”、钥匙(1),当时(ARGV[2)))

返回 真正的

其他的

返回

结束


注意:此脚本中命令的执行并不是严格意义上的原子性,如果其中第二条指令到期执行失败,整个脚本执行会返回错误,但是第一条指令SETNX仍然是已经生效的!不过此种情况基本可以认为是复述,服务器已经崩溃(除非是开发阶段就可以排除的参数错误之类的问题),那么锁的安全性就已经不是这里可以关注的点了。这里认为对客户端来说是相对原子性的就足够了。

这个简单的脚本在复述,服务器得到执行,并返回是否得到锁。因为脚本的提交执行只有一条复述,命令,就避免了上面所说的客户端异常问题。

使用脚本优化了锁的逻辑和性能,这里给出最终的Java实现代码:



公共 RedisLock {

私人 静态 最后日志记录器= LoggerFactory.getLogger(RedisLock.class);

私人 最后StringRedisTemplate StringRedisTemplate;

私人 最后字符串lockKey;

私人 最后<字符串>键列表;

/ * *

*使用脚本在复述,服务器执行这个逻辑可以在一定程度上保证此操作的原子性

*(即不会发生客户端在执行setNX和到期命令之间,发生崩溃或失去与服务器的连接导致过期没有得到执行,发生永久死锁)

* < p >

*除非脚本在复述,服务器执行时复述,服务器发生崩溃,不过此种情况锁也会失效

* /

私人 静态 最后RedisScript <布尔> SETNX_AND_EXPIRE_SCRIPT;

静态{

StringBuilder某人=StringBuilder();

sb.append(“如果(复述。 调用(setnx,键[1],ARGV[1])= = 1),那么\ n ");

sb.append(“\ tredis。 调用(“过期”,键[1],当时(ARGV[2]))\ n”);

sb.append(“\ treturn真的\ n”);

sb.append(“\ n”);

sb.append(“\ treturn假\ n”);

sb.append(“结束”);

SETNX_AND_EXPIRE_SCRIPT =RedisScriptImpl <布尔>(sb.toString(),Boolean.class);

}

公共 RedisLock(StringRedisTemplate StringRedisTemplate,字符串lockKey) {

。 stringRedisTemplate = stringRedisTemplate;

。 lockKey = lockKey;

。 键= Collections.singletonList(lockKey);

}

私人 布尔 doTryLock(intlockSeconds) 抛出异常{

返回stringRedisTemplate。 execute(SETNX_AND_EXPIRE_SCRIPT、钥匙、“1”String.valueOf(lockSeconds));

}

/ * *

*尝试获得锁,成功返回真,如果失败立即返回错误的

*

*@paramlockSeconds加锁的时间(秒),超过这个时间后锁会自动释放

* /

公共 布尔 tryLock(intlockSeconds) {

试一试{

返回doTryLock(lockSeconds);

}(异常e){

logger.error(“tryLock错误”,e);

返回 ;

}

}

/ * *

*轮询的方式去获得锁,成功返回真,超过轮询次数或异常返回错误的

*

*@paramlockSeconds加锁的时间(秒),超过这个时间后锁会自动释放

*@paramtryIntervalMillis轮询的时间间隔(毫秒)

*@parammaxTryCount最大的轮询次数

* /

公共 布尔 tryLock(最后 intlockSeconds,最后 tryIntervalMillis,最后 intmaxTryCount) {

inttryCount =0;

(真正的){

如果(+ + tryCount > = maxTryCount){

/ /获取锁超时

返回 ;

}

试一试{

如果(doTryLock(lockSeconds)){

返回 真正的;

}

}(异常e){

logger.error(“tryLock错误”,e);

返回 ;

}

试一试{

thread . sleep(tryIntervalMillis);

}(InterruptedException e){

logger.error(“tryLock打断了”,e);

返回 ;

}

}

}

/ * *

*如果加锁后的操作比较耗时,调用方其实可以在解锁前根据时间判断下锁是否已经过期

*如果已经过期可以不用调用,减少一次请求

* /

公共 无效 解锁() {

stringRedisTemplate.delete(lockKey);

}

私人 静态 RedisScriptImpl<T>实现了 RedisScript<T>{

私人 最后字符串脚本;

私人 最后字符串sha1;

私人 最后类< T > resultType;

公共 RedisScriptImpl(字符串脚本,类< T > resultType) {

。 脚本=脚本;

。 sha1 = DigestUtils.sha1DigestAsHex(脚本);

。 resultType = resultType;

}

@Override

公共字符串getSha1() {

返回sha1;

}

@Override

公共类< T >getResultType() {

返回resultType;

}

@Override

公共字符串getScriptAsString() {

返回脚本;

}

}

}


合——小节

最后,此文内容只是笔者自己学习折腾出来的结果,如果还有什么笔者没有考虑到的缺陷存在,还请不吝指出,大家一起学习进步~

追——解锁漏洞(2017-11-01更新)

经过慎重考虑,发现以上实现的分布式锁有一个较为严重的解锁漏洞:因为解锁操作只是做了简单的DEL KEY,如果某客户端在获得锁后执行业务的时间超过了锁的过期时间,则最后的解锁操作会误解掉其他客户端的操作。

为解决此问题,我们在创建RedisLock对象时用本机时间戳和UUID来创建一个绝对唯一的lockValue,然后在加锁时存入此值,并在解锁前用GET取出值进行比较,如果匹配才做DEL。这里依然需要用LUA脚本保证整个解锁过程的原子性。

这里给出修复此漏洞并做了一些小优化之后的代码:



进口java.util.Collections;

进口java.util.UUID;

进口org.slf4j.Logger;

进口org.slf4j.LoggerFactory;

进口org.springframework.data.redis.core.StringRedisTemplate;

进口org.springframework.data.redis.core.script.DigestUtils;

进口org.springframework.data.redis.core.script.RedisScript;

/ * *

*创建在2017年10/24

*复述,实现的分布式锁(不可重入)

*此对象非线程安全,使用时务必注意

* /

公共 RedisLock {

私人 静态 最后日志记录器= LoggerFactory.getLogger(RedisLock.class);

私人 最后StringRedisTemplate StringRedisTemplate;

私人 最后字符串lockKey;

私人 最后字符串lockValue;

私人 布尔锁=;

/ * *

*使用脚本在复述,服务器执行这个逻辑可以在一定程度上保证此操作的原子性

*(即不会发生客户端在执行setNX和到期命令之间,发生崩溃或失去与服务器的连接导致过期没有得到执行,发生永久死锁)

* < p >

*除非脚本在复述,服务器执行时复述,服务器发生崩溃,不过此种情况锁也会失效

* /

私人 静态 最后RedisScript <布尔> SETNX_AND_EXPIRE_SCRIPT;

静态{

StringBuilder某人=StringBuilder();

sb.append(“如果(复述。 调用(setnx,键[1],ARGV[1])= = 1),那么\ n ");

sb.append(“\ tredis。 调用(“过期”,键[1],当时(ARGV[2]))\ n”);

sb.append(“\ treturn真的\ n”);

sb.append(“\ n”);

sb.append(“\ treturn假\ n”);

sb.append(“结束”);

SETNX_AND_EXPIRE_SCRIPT =RedisScriptImpl <布尔>(sb.toString(),Boolean.class);

}

私人 静态 最后RedisScript <布尔> DEL_IF_GET_EQUALS;

静态{

StringBuilder某人=StringBuilder();

sb.append(“如果(复述。 调用(“得到”,键[1])= = ARGV[1])然后\ n”);

sb.append(“\ tredis。 调用(“▽”键[1])\ n”);

sb.append(“\ treturn真的\ n”);

sb.append(“\ n”);

sb.append(“\ treturn假\ n”);

sb.append(“结束”);

DEL_IF_GET_EQUALS =RedisScriptImpl <布尔>(sb.toString(),Boolean.class);

}

公共 RedisLock(StringRedisTemplate StringRedisTemplate,字符串lockKey) {

。 stringRedisTemplate = stringRedisTemplate;

。 lockKey = lockKey;

。 .toString lockValue = UUID.randomUUID()()+“。”+ System.currentTimeMillis();

}

私人 布尔 doTryLock(intlockSeconds) 抛出异常{

如果(锁){

IllegalStateException(“已经锁定!”);

}

锁= stringRedisTemplate。 执行(SETNX_AND_EXPIRE_SCRIPT Collections.singletonList(lockKey)lockValue,

String.valueOf(lockSeconds));

返回锁定;

}

/ * *

*尝试获得锁,成功返回真,如果失败立即返回错误的

*

*@paramlockSeconds加锁的时间(秒),超过这个时间后锁会自动释放

* /

公共 布尔 tryLock(intlockSeconds) {

试一试{

返回doTryLock(lockSeconds);

}(异常e){

logger.error(“tryLock错误”,e);

返回 ;

}

}

/ * *

*轮询的方式去获得锁,成功返回真,超过轮询次数或异常返回错误的

*

*@paramlockSeconds加锁的时间(秒),超过这个时间后锁会自动释放

*@paramtryIntervalMillis轮询的时间间隔(毫秒)

*@parammaxTryCount最大的轮询次数

* /

公共 布尔 tryLock(最后 intlockSeconds,最后 tryIntervalMillis,最后 intmaxTryCount) {

inttryCount =0;

(真正的){

如果(+ + tryCount > = maxTryCount){

/ /获取锁超时

返回 ;

}

试一试{

如果(doTryLock(lockSeconds)){

返回 真正的;

}

}(异常e){

logger.error(“tryLock错误”,e);

返回 ;

}

试一试{

thread . sleep(tryIntervalMillis);

}(InterruptedException e){

logger.error(“tryLock打断了”,e);

返回 ;

}

}

}

/ * *

*解锁操作

* /

公共 无效 解锁() {

如果(锁){

IllegalStateException(“没有锁!”);

}

锁=;

/ /忽略结果

stringRedisTemplate。 执行(DEL_IF_GET_EQUALS Collections.singletonList(lockKey)lockValue);

}

私人 静态 RedisScriptImpl<T>实现了 RedisScript<T>{

私人 最后字符串脚本;

私人 最后字符串sha1;

私人 最后类< T > resultType;

公共 RedisScriptImpl(字符串脚本,类< T > resultType) {

。 脚本=脚本;

。 sha1 = DigestUtils.sha1DigestAsHex(脚本);

。 resultType = resultType;

}

@Override

公共字符串getSha1() {

返回sha1;

}

@Override

公共类< T >getResultType() {

返回resultType;

}

@Override

公共字符串getScriptAsString() {

返回脚本;

}

}

}


原创粉丝点击