Tensorflow实例:实现进阶的卷积神经网络

来源:互联网 发布:ipv6根域名中国服务器 编辑:程序博客网 时间:2024/06/05 16:09

在上一篇博客,我们实现了一个简单的卷积神经网络,没有复杂的Trick。接下来,我们将使用CIFAR-10数据集进行训练。
CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张。CIFAR-10如同其名字,一共标注为10类,每一类图片6000张。
本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧:

  1. 对weights进行了L2的正则化
  2. 对图片进行了翻转、随机剪切等数据增强,制造了更多样本
  3. 在每个卷积-最大池化层后面使用了LRN(局部响应归一化层),增强了模型的泛化能力

首先需要下载Tensorflow models Tensorflow models,以便使用其中的CIFAR-10数据的类.进入目录models/tutorials/image/cifar10目录,执行以下代码

import cifar10import cifar10_inputimport tensorflow as tfimport numpy as npimport time# 定义batch_size, 训练轮数max_steps, 以及下载CIFAR-10数据的默认路径max_steps = 3000batch_size = 128data_dir = 'E:\\tmp\cifar10_data\cifar-10-batches-bin'# 定义初始化weight的函数,定义的同时,对weight加一个L2 loss,放在集'losses'中def variable_with_weight_loss(shape, stddev, w1):    var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))    if w1 is not None:        weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name='weight_loss')        tf.add_to_collection('losses', weight_loss)    return var# 使用cifar10类下载数据集,并解压、展开到其默认位置#cifar10.maybe_download_and_extract()# 在使用cifar10_input类中的distorted_inputs函数产生训练需要使用的数据。需要注意的是,返回的是已经封装好的tensor,# 且对数据进行了Data Augmentation(水平翻转、随机剪切、设置随机亮度和对比度、对数据进行标准化)images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=batch_size)# 再使用cifar10_input.inputs函数生成测试数据,这里不需要进行太多处理images_test, labels_test = cifar10_input.inputs(eval_data=True,                                                data_dir=data_dir,                                                batch_size=batch_size)# 创建数据的placeholderimage_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])label_holder = tf.placeholder(tf.int32, [batch_size])# 创建第一个卷积层weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2,                                    w1=0.0)kernel1 = tf.nn.conv2d(image_holder, weight1, strides=[1, 1, 1, 1], padding='SAME')bias1 = tf.Variable(tf.constant(0.0, shape=[64]))conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],                       padding='SAME')# LRN层对ReLU会比较有用,但不适合Sigmoid这种有固定边界并且能抑制过大值的激活函数norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)# 创建第二个卷积层weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2,                                    w1=0.0)kernel2 = tf.nn.conv2d(norm1, weight2, strides=[1, 1, 1, 1], padding='SAME')bias2 = tf.Variable(tf.constant(0.1, shape=[64]))conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],                       padding='SAME')# 使用一个全连接层reshape = tf.reshape(pool2, [batch_size, -1])dim = reshape.get_shape()[1].valueweight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, w1=0.004)bias3 = tf.Variable(tf.constant(0.1, shape=[384]))local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)# 再使用一个全连接层,隐含节点数下降了一半,只有192个,其他的超参数保持不变weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, w1=0.004)bias4 = tf.Variable(tf.constant(0.1, shape=[192]))local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)# 最后一层,将softmax放在了计算loss部分weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1 / 192.0, w1=0.0)bias5 = tf.Variable(tf.constant(0.0, shape=[10]))logits = tf.add(tf.matmul(local4, weight5), bias5)# 定义lossdef loss(logits, labels):    labels = tf.cast(labels, tf.int64)    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,                                                                   name='cross_entropy_per_example')    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')    tf.add_to_collection('losses', cross_entropy_mean)    return tf.add_n(tf.get_collection('losses'), name='total_loss')# 获取最终的lossloss = loss(logits, label_holder)# 优化器train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)# 使用tf.nn.in_top_k函数求输出结果中top k的准确率,默认使用top 1,也就是输出分数最高的那一类的准确率top_k_op = tf.nn.in_top_k(logits, label_holder, 1)# 使用tf.InteractiveSession创建默认的session,接着初始化全部模型参数sess = tf.InteractiveSession()tf.global_variables_initializer().run()# 启动图片数据增强线程tf.train.start_queue_runners()# 正式开始训练for step in range(max_steps):    start_time = time.time()    image_batch, label_batch = sess.run([images_train, labels_train])    _, loss_value = sess.run([train_op, loss], feed_dict={image_holder: image_batch, label_holder: label_batch})    duration = time.time() - start_time    if step % 10 == 0:        example_per_sec = batch_size / duration        sec_per_batch = float(duration)        format_str = 'step %d, loss=%.2f ,%.1f examples/sec, %.3f sec/batch'        print(format_str % (step, loss_value, example_per_sec, sec_per_batch))num_examples = 10000import mathnum_iter = int(math.ceil(num_examples / batch_size))true_count = 0total_sample_count = num_iter * batch_sizestep = 0while step < num_iter:    image_batch, label_batch = sess.run([images_test, labels_test])    predictions = sess.run([top_k_op], feed_dict={image_holder: image_batch, label_holder: label_holder})    true_count += np.sum(predictions)    step += 1precision = true_count / total_sample_countprint('precision @ 1 = %.3f'%precision)

运行结果:
这里写图片描述

原创粉丝点击