Tensorflow实战学习(二十)【序列标注、手写小写字母OCR数据集、双向RNN】

来源:互联网 发布:泼墨门事件知乎 编辑:程序博客网 时间:2024/05/21 08:41

序列标注(sequence labelling),输入序列每一帧预测一个类别。OCR(Optical Character Recognition 光学字符识别)。

MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像。字线组合序列,序列对应单词。6800个,长度不超过14字母的单词。gzip压缩,内容用Tab分隔文本文件。Python csv模块直接读取。文件每行一个归一化字母属性,ID号、标签、像素值、下一字母ID号等。

下一字母ID值排序,按照正确顺序读取每个单词字母。收集字母,直到下一个ID对应字段未被设置为止。读取新序列。读取完目标字母及数据像素,用零图像填充序列对象,能纳入两个较大目标字母所有像素数据NumPy数组。

时间步之间共享softmax层。数据和目标数组包含序列,每个目标字母对应一个图像帧。RNN扩展,每个字母输出添加softmax分类器。分类器对每帧数据而非整个序列评估预测结果。计算序列长度。一个softmax层添加到所有帧:或者为所有帧添加几个不同分类器,或者令所有帧共享同一个分类器。共享分类器,权值在训练中被调整次数更多,训练单词每个字母。一个全连接层权值矩阵维数batch_size*in_size*out_size。现需要在两个输入维度batch_size、sequence_steps更新权值矩阵。令输入(RNN输出活性值)扁平为形状batch_size*sequence_steps*in_size。权值矩阵变成较大的批数据。结果反扁平化(unflatten)。

代价函数,序列每一帧有预测目标对,在相应维度平均。依据张量长度(序列最大长度)归一化的tf.reduce_mean无法使用。需要按照实际序列长度归一化,手工调用tf.reduce_sum和除法运算均值。

损失函数,tf.argmax针对轴2非轴1,各帧填充,依据序列实际长度计算均值。tf.reduce_mean对批数据所有单词取均值。

TensorFlow自动导数计算,可使用序列分类相同优化运算,只需要代入新代价函数。对所有RNN梯度裁剪,防止训练发散,避免负面影响。

训练模型,get_sataset下载手写体图像,预处理,小写字母独热编码向量。随机打乱数据顺序,分偏划分训练集、测试集。

单词相邻字母存在依赖关系(或互信息),RNN保存同一单词全部输入信息到隐含活性值。前几个字母分类,网络无大量输入推断额外信息,双向RNN(bidirectional RNN)克服缺陷。
两个RNN观测输入序列,一个按照通常顺序从左端读取单词,另一个按照相反顺序从右端读取单词。每个时间步得到两个输出活性值。送入共享softmax层前,拼接。分类器从每个字母获取完整单词信息。tf.modle.rnn.bidirectional_rnn已实现。

实现双向RNN。划分预测属性到两个函数,只关注较少内容。_shared_softmax函数,传入函数张量data推断输入尺寸。复用其他架构函数,相同扁平化技巧在所有时间步共享同一个softmax层。rnn.dynamic_rnn创建两个RNN。
序列反转,比实现新反向传递RNN运算容易。tf.reverse_sequence函数反转帧数据中sequence_lengths帧。数据流图节点有名称。scope参数是rnn_dynamic_cell变量scope名称,默认值RNN。两个参数不同RNN,需要不同域。
反转序列送入后向RNN,网络输出反转,和前向输出对齐。沿RNN神经元输出维度拼接两个张量,返回。双向RNN模型性能更优。

    import gzip    import csv    import numpy as np    from helpers import download    class OcrDataset:        URL = 'http://ai.stanford.edu/~btaskar/ocr/letter.data.gz'        def __init__(self, cache_dir):            path = download(type(self).URL, cache_dir)            lines = self._read(path)            data, target = self._parse(lines)            self.data, self.target = self._pad(data, target)        @staticmethod        def _read(filepath):            with gzip.open(filepath, 'rt') as file_:                reader = csv.reader(file_, delimiter='\t')                lines = list(reader)                return lines        @staticmethod        def _parse(lines):            lines = sorted(lines, key=lambda x: int(x[0]))            data, target = [], []            next_ = None            for line in lines:                if not next_:                    data.append([])                    target.append([])                else:                    assert next_ == int(line[0])                next_ = int(line[2]) if int(line[2]) > -1 else None                pixels = np.array([int(x) for x in line[6:134]])                pixels = pixels.reshape((16, 8))                data[-1].append(pixels)                target[-1].append(line[1])            return data, target        @staticmethod        def _pad(data, target):            max_length = max(len(x) for x in target)            padding = np.zeros((16, 8))            data = [x + ([padding] * (max_length - len(x))) for x in data]            target = [x + ([''] * (max_length - len(x))) for x in target]            return np.array(data), np.array(target)    import tensorflow as tf    from helpers import lazy_property    class SequenceLabellingModel:        def __init__(self, data, target, params):            self.data = data            self.target = target            self.params = params            self.prediction            self.cost            self.error            self.optimize        @lazy_property        def length(self):            used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))            length = tf.reduce_sum(used, reduction_indices=1)            length = tf.cast(length, tf.int32)            return length        @lazy_property        def prediction(self):            output, _ = tf.nn.dynamic_rnn(                tf.nn.rnn_cell.GRUCell(self.params.rnn_hidden),                self.data,                dtype=tf.float32,                sequence_length=self.length,            )            # Softmax layer.            max_length = int(self.target.get_shape()[1])            num_classes = int(self.target.get_shape()[2])            weight = tf.Variable(tf.truncated_normal(                [self.params.rnn_hidden, num_classes], stddev=0.01))            bias = tf.Variable(tf.constant(0.1, shape=[num_classes]))            # Flatten to apply same weights to all time steps.            output = tf.reshape(output, [-1, self.params.rnn_hidden])            prediction = tf.nn.softmax(tf.matmul(output, weight) + bias)            prediction = tf.reshape(prediction, [-1, max_length, num_classes])            return prediction        @lazy_property        def cost(self):            # Compute cross entropy for each frame.            cross_entropy = self.target * tf.log(self.prediction)            cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))            cross_entropy *= mask            # Average over actual sequence lengths.            cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)            cross_entropy /= tf.cast(self.length, tf.float32)            return tf.reduce_mean(cross_entropy)        @lazy_property        def error(self):            mistakes = tf.not_equal(                tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))            mistakes = tf.cast(mistakes, tf.float32)            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))            mistakes *= mask            # Average over actual sequence lengths.            mistakes = tf.reduce_sum(mistakes, reduction_indices=1)            mistakes /= tf.cast(self.length, tf.float32)            return tf.reduce_mean(mistakes)        @lazy_property        def optimize(self):            gradient = self.params.optimizer.compute_gradients(self.cost)            try:                limit = self.params.gradient_clipping                gradient = [                    (tf.clip_by_value(g, -limit, limit), v)                    if g is not None else (None, v)                    for g, v in gradient]            except AttributeError:                print('No gradient clipping parameter specified.')            optimize = self.params.optimizer.apply_gradients(gradient)            return optimize    import random    import tensorflow as tf    import numpy as np    from helpers import AttrDict    from OcrDataset import OcrDataset    from SequenceLabellingModel import SequenceLabellingModel    from batched import batched    params = AttrDict(        rnn_cell=tf.nn.rnn_cell.GRUCell,        rnn_hidden=300,        optimizer=tf.train.RMSPropOptimizer(0.002),        gradient_clipping=5,        batch_size=10,        epochs=5,        epoch_size=50    )    def get_dataset():        dataset = OcrDataset('./ocr')        # Flatten images into vectors.        dataset.data = dataset.data.reshape(dataset.data.shape[:2] + (-1,))        # One-hot encode targets.        target = np.zeros(dataset.target.shape + (26,))        for index, letter in np.ndenumerate(dataset.target):            if letter:                target[index][ord(letter) - ord('a')] = 1        dataset.target = target        # Shuffle order of examples.        order = np.random.permutation(len(dataset.data))        dataset.data = dataset.data[order]        dataset.target = dataset.target[order]        return dataset    # Split into training and test data.    dataset = get_dataset()    split = int(0.66 * len(dataset.data))    train_data, test_data = dataset.data[:split], dataset.data[split:]    train_target, test_target = dataset.target[:split], dataset.target[split:]    # Compute graph.    _, length, image_size = train_data.shape    num_classes = train_target.shape[2]    data = tf.placeholder(tf.float32, [None, length, image_size])    target = tf.placeholder(tf.float32, [None, length, num_classes])    model = SequenceLabellingModel(data, target, params)    batches = batched(train_data, train_target, params.batch_size)    sess = tf.Session()    sess.run(tf.initialize_all_variables())    for index, batch in enumerate(batches):        batch_data = batch[0]        batch_target = batch[1]        epoch = batch[2]        if epoch >= params.epochs:            break        feed = {data: batch_data, target: batch_target}        error, _ = sess.run([model.error, model.optimize], feed)        print('{}: {:3.6f}%'.format(index + 1, 100 * error))    test_feed = {data: test_data, target: test_target}    test_error, _ = sess.run([model.error, model.optimize], test_feed)    print('Test error: {:3.6f}%'.format(100 * error))    import tensorflow as tf    from helpers import lazy_property    class BidirectionalSequenceLabellingModel:        def __init__(self, data, target, params):            self.data = data            self.target = target            self.params = params            self.prediction            self.cost            self.error            self.optimize        @lazy_property        def length(self):            used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))            length = tf.reduce_sum(used, reduction_indices=1)            length = tf.cast(length, tf.int32)            return length        @lazy_property        def prediction(self):            output = self._bidirectional_rnn(self.data, self.length)            num_classes = int(self.target.get_shape()[2])            prediction = self._shared_softmax(output, num_classes)            return prediction        def _bidirectional_rnn(self, data, length):            length_64 = tf.cast(length, tf.int64)            forward, _ = tf.nn.dynamic_rnn(                cell=self.params.rnn_cell(self.params.rnn_hidden),                inputs=data,                dtype=tf.float32,                sequence_length=length,                scope='rnn-forward')            backward, _ = tf.nn.dynamic_rnn(            cell=self.params.rnn_cell(self.params.rnn_hidden),            inputs=tf.reverse_sequence(data, length_64, seq_dim=1),            dtype=tf.float32,            sequence_length=self.length,            scope='rnn-backward')            backward = tf.reverse_sequence(backward, length_64, seq_dim=1)            output = tf.concat(2, [forward, backward])            return output        def _shared_softmax(self, data, out_size):            max_length = int(data.get_shape()[1])            in_size = int(data.get_shape()[2])            weight = tf.Variable(tf.truncated_normal(                [in_size, out_size], stddev=0.01))            bias = tf.Variable(tf.constant(0.1, shape=[out_size]))            # Flatten to apply same weights to all time steps.            flat = tf.reshape(data, [-1, in_size])            output = tf.nn.softmax(tf.matmul(flat, weight) + bias)            output = tf.reshape(output, [-1, max_length, out_size])            return output        @lazy_property        def cost(self):            # Compute cross entropy for each frame.            cross_entropy = self.target * tf.log(self.prediction)            cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))            cross_entropy *= mask            # Average over actual sequence lengths.            cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)            cross_entropy /= tf.cast(self.length, tf.float32)            return tf.reduce_mean(cross_entropy)        @lazy_property        def error(self):            mistakes = tf.not_equal(                tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))            mistakes = tf.cast(mistakes, tf.float32)            mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))            mistakes *= mask            # Average over actual sequence lengths.            mistakes = tf.reduce_sum(mistakes, reduction_indices=1)            mistakes /= tf.cast(self.length, tf.float32)            return tf.reduce_mean(mistakes)        @lazy_property        def optimize(self):            gradient = self.params.optimizer.compute_gradients(self.cost)            try:                limit = self.params.gradient_clipping                gradient = [                    (tf.clip_by_value(g, -limit, limit), v)                    if g is not None else (None, v)                    for g, v in gradient]            except AttributeError:                print('No gradient clipping parameter specified.')            optimize = self.params.optimizer.apply_gradients(gradient)            return optimize

参考资料:
《面向机器智能的TensorFlow实践》

阅读全文
0 0
原创粉丝点击