C# ConcurrentQueue实现

来源:互联网 发布:域名注册管理机构 编辑:程序博客网 时间:2024/06/05 06:54

我们从C# Queue 和Stack的实现知道Queue是用数组来实现的,数组的元素不断的通过Array.Copy从一个数组移动到另一个数组,ConcurrentQueue我们需要关心2点:1线程安全是怎么实现的,2队列又是怎么实现的?我们来看看其实现code:

public interface IProducerConsumerCollection<T> : IEnumerable<T>, ICollection{    void CopyTo(T[] array, int index);    bool TryAdd(T item);    bool TryTake(out T item);    T[] ToArray();} public class ConcurrentQueue<T> : IProducerConsumerCollection<T>, IReadOnlyCollection<T>{    [NonSerialized]    private volatile Segment m_head;    [NonSerialized]    private volatile Segment m_tail;    private T[] m_serializationArray; // Used for custom serialization.    private const int SEGMENT_SIZE = 32;    //number of snapshot takers, GetEnumerator(), ToList() and ToArray() operations take snapshot.    [NonSerialized]    internal volatile int m_numSnapshotTakers = 0;        public ConcurrentQueue()    {        m_head = m_tail = new Segment(0, this);    }        public ConcurrentQueue(IEnumerable<T> collection)    {        if (collection == null)        {            throw new ArgumentNullException("collection");        }        InitializeFromCollection(collection);    }        private void InitializeFromCollection(IEnumerable<T> collection)    {        Segment localTail = new Segment(0, this);//use this local variable to avoid the extra volatile read/write. this is safe because it is only called from ctor        m_head = localTail;         int index = 0;        foreach (T element in collection)        {            Contract.Assert(index >= 0 && index < SEGMENT_SIZE);            localTail.UnsafeAdd(element);            index++;            if (index >= SEGMENT_SIZE)            {                localTail = localTail.UnsafeGrow();                index = 0;            }        }        m_tail = localTail;    }        public void Enqueue(T item)    {        SpinWait spin = new SpinWait();        while (true)        {            Segment tail = m_tail;            if (tail.TryAppend(item))                return;            spin.SpinOnce();        }    }        public bool TryDequeue(out T result)    {        while (!IsEmpty)        {            Segment head = m_head;            if (head.TryRemove(out result))                return true;            //since method IsEmpty spins, we don't need to spin in the while loop        }        result = default(T);        return false;    }        private class Segment   {        internal volatile T[] m_array;        internal volatile VolatileBool[] m_state;        private volatile Segment m_next;        internal readonly long m_index;        private volatile int m_low;        private volatile int m_high;        private volatile ConcurrentQueue<T> m_source;              internal Segment(long index, ConcurrentQueue<T> source)        {            m_array = new T[SEGMENT_SIZE];            m_state = new VolatileBool[SEGMENT_SIZE]; //all initialized to false            m_high = -1;            Contract.Assert(index >= 0);            m_index = index;            m_source = source;        }                internal void UnsafeAdd(T value)        {            Contract.Assert(m_high < SEGMENT_SIZE - 1);            m_high++;            m_array[m_high] = value;            m_state[m_high].m_value = true;        }               internal Segment UnsafeGrow()        {            Contract.Assert(m_high >= SEGMENT_SIZE - 1);            Segment newSegment = new Segment(m_index + 1, m_source); //m_index is Int64, we don't need to worry about overflow            m_next = newSegment;            return newSegment;        }              internal void Grow()        {            //no CAS is needed, since there is no contention (other threads are blocked, busy waiting)            Segment newSegment = new Segment(m_index + 1, m_source);  //m_index is Int64, we don't need to worry about overflow            m_next = newSegment;            Contract.Assert(m_source.m_tail == this);            m_source.m_tail = m_next;        }                   internal bool TryAppend(T value)       {                         if (m_high >= SEGMENT_SIZE - 1)            {                return false;            }            try            { }            finally            {                newhigh = Interlocked.Increment(ref m_high);                if (newhigh <= SEGMENT_SIZE - 1)                {                    m_array[newhigh] = value;                    m_state[newhigh].m_value = true;                }                if (newhigh == SEGMENT_SIZE - 1)                {                    Grow();                }            }                    return newhigh <= SEGMENT_SIZE - 1;        }              internal bool TryRemove(out T result)        {            SpinWait spin = new SpinWait();            int lowLocal = Low, highLocal = High;            while (lowLocal <= highLocal)            {                if (Interlocked.CompareExchange(ref m_low, lowLocal + 1, lowLocal) == lowLocal)                {                                      SpinWait spinLocal = new SpinWait();                    while (!m_state[lowLocal].m_value)                    {                        spinLocal.SpinOnce();                    }                    result = m_array[lowLocal];                    if (m_source.m_numSnapshotTakers <= 0)                    {                        m_array[lowLocal] = default(T); //release the reference to the object.                     }                                     if (lowLocal + 1 >= SEGMENT_SIZE)                    {                                               spinLocal = new SpinWait();                        while (m_next == null)                        {                            spinLocal.SpinOnce();                        }                        Contract.Assert(m_source.m_head == this);                        m_source.m_head = m_next;                    }                    return true;                }                else                {                                       spin.SpinOnce();                    lowLocal = Low; highLocal = High;                }            }//end of while            result = default(T);            return false;        }         }    }

首先ConcurrentQueue构造函数没有 int capacity参数了,里面的线程安全是用SpinWait自旋来实现的,当我想往队列ConcurrentQueue添加一个元素的时候,如果添加失败,那程序自旋等待一下,再次添加元素,直到添加成功。里面用到了一个Segment自定义的类型,Segment的m_array是一个含有32个元素的数组,m_state和m_array一一对应,主要是用来标记m_array里面的元素是否有效。m_next是用来连接到下一个Segment的,m_high与添加元素密切相关,m_low与移除元素有关。先看TryAppend方法,优先将当前的newhigh原子加1【newhigh = Interlocked.Increment(ref m_high);】,这样假如有多个线程同时添加元素,每一个线程拿到的newhigh 值不用,那么它们操作m_array的下标就不同了,所以彼此之间不影响,到现在添加的线程安全就明白了。那么队列又是如何实现的了?我们来看看Grow()方法,当Segment的32个元素都被使用了,那么这个时候添加元素需要扩容,扩容的方式是重新实例一个Segment,旧的Segment的m_next属性指向新的得Segment,这样就组成了一个Segment链表(Segment核心是数组),它们的index从0开始,第一个Segment的index为0,第2个Segment的index为1....。TryRemove的实现类似,m_low其实是Segment的m_array下标,程序自旋一次,查找是否有元素,如果有元素必须检查元素是否有效(!m_state[lowLocal].m_value,因为在天加元素的时候是先增加newhigh变量,然后在设置m_state[newhigh].m_value = true有效),所以移除元素的时候必选验证元素是否有效。然后释放元素m_array[lowLocal] = default(T);,如果第一个Segment的元素全部移除了【if (lowLocal + 1 >= SEGMENT_SIZE)】,那么我们就应该开始移除第2个Segment元素了,需要检查是否有第2个Segment,如果没有 就自旋等待吧,然后m_head指向第下一个Segment【m_source.m_head = m_next;】线程安全依靠SpinWait 的自旋和原子操作Interlocked.Increment和Interlocked.CompareExchange来实现的。

原创粉丝点击