我在读pyTorch文档(四)

来源:互联网 发布:小米关闭软件自动更新 编辑:程序博客网 时间:2024/05/16 11:38

torch.nn.Module

打印所有子模块:

for sub_module in model.children():    print(sub_module)

按照名字打印子模块:

for name, module in model.named_children():    if name in ['conv4', 'conv5']:        print(module)

打印所有模块:

for module in model.modules():    print(module)

按照名字打印所有模块:

for name, module in model.named_modules():    if name in ['conv4', 'conv5']:        print(module)

打印模型所有参数:

for param in model.parameters():    print(type(param.data), param.size())

打印模型所有参数名字:

model.state_dict().keys()
  1. model.cpu():将模型复制到CPU上;
  2. model.cuda():将模型复制到GPU上;
  3. model.double():将模型数据类型转换为double;
  4. model.eval():将模型设置成test模式,仅仅当模型中有Dropout和BatchNorm是才会有影响;
  5. model.float():将模型数据类型转换为float;
  6. model.half():将模型数据类型转换为half;
  7. model.load_state_dict(state_dict):用来加载模型参数,将state_dict中的parameters和buffers复制到此module和它的后代中,state_dict中的key必须和model.state_dict()返回的key一致;
  8. model.state_dict():返回一个字典,保存着module的所有状态;
  9. model.train():将模型设置为训练模式;
  10. model.zero_grad():将模型中的所有模型参数的梯度设置为0;

torch.nn.Sequential

时序模型例子

model = nn.Sequential(          nn.Conv2d(1,20,5),          nn.ReLU(),          nn.Conv2d(20,64,5),          nn.ReLU()        )##################or##################model = nn.Sequential(OrderedDict([          ('conv1', nn.Conv2d(1,20,5)),          ('relu1', nn.ReLU()),          ('conv2', nn.Conv2d(20,64,5)),          ('relu2', nn.ReLU())        ]))

卷积层

  1. 一维卷积:
    torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
    输入输出尺寸关系:Lout=floor((Lin+2paddingdilation(kernerlSize1)1)/stride+1)
  2. 二维卷积:
    torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
    输入输出尺寸关系:Hout=floor((Hin+2padding[0]dilation[0](kernerlSize[0]1)1)/stride[0]+1) Wout=floor((Win+2padding[1]dilation[1](kernerlSize[1]1)1)/stride[1]+1)
  3. 三维卷积:
    torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
    输入输出尺寸关系:Dout=floor((Din+2padding[0]dilation[0](kernerlSize[0]1)1)/stride[0]+1) Hout=floor((Hin+2padding[1]dilation[2](kernerlSize[1]1)1)/stride[1]+1) Wout=floor((Win+2padding[2]dilation[2](kernerlSize[2]1)1)/stride[2]+1)
  4. 一维反卷积:
    torch.nn.ConvTranspose1d(in_channels,out_channels,kernel_size,stride=1,padding=0,output_padding=0,groups=1,bias=True)
    输入输出尺寸关系:
    Lout=(Lin1)stride2padding+kernelSize+outputPadding
  5. 二维反卷积:
    torch.nn.ConvTranspose2d(in_channels,out_channels,kernel_size,stride=1,padding=0,output_padding=0,groups=1,bias=True)
    输入输出尺寸关系:
    Hout=(Hin1)stride[0]2padding[0]+kernelSize[0]+outputPadding[0] Wout=(Win1)stride[1]2padding[1]+kernelSize[1]+outputPadding[1]
  6. 三维反卷积:
    torch.nn.ConvTranspose3d(in_channels,out_channels,kernel_size,stride=1,padding=0,output_padding=0,groups=1,bias=True)
    输入输出尺寸关系:
    Dout=(Din1)stride[0]2padding[0]+kernelSize[0]+outputPadding[0] Hout=(Hin1)stride[1]2padding[1]+kernelSize[1]+outputPadding[0] Wout=(Win1)stride[2]2padding[2]+kernelSize[2]+outputPadding[2]

池化层

  1. 一维池化:
    torch.nn.MaxPool1d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
    输入输出尺寸关系:
    Lout=floor((Lin+2paddingdilation(kernelSize1)1)/stride+1
  2. 二维池化:
    torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
    输入输出尺寸关系:
    Hout=floor((Hin+2padding[0]dilation[0](kernelSize[0]1)1)/stride[0]+1 Wout=floor((Win+2padding[1]dilation[1](kernelSize[1]1)1)/stride[1]+1
  3. 三维池化:
    torch.nn.MaxPool3d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
    输入输出尺寸关系:
    Dout=floor((Din+2padding[0]dilation[0](kernelSize[0]1)1)/stride[0]+1) Hout=floor((Hin+2padding[1]dilation[1](kernelSize[0]1)1)/stride[1]+1) Wout=floor((Win+2padding[2]dilation[2](kernelSize[2]1)1)/stride[2]+1)
  4. 一维反池化:
    torch.nn.MaxUnpool1d(kernel_size, stride=None, padding=0)
    输入输出尺寸关系:
    Hout=(Hin1)stride[0]2padding[0]+kernelSize[0]
  5. 二维反池化:
    torch.nn.MaxUnpool2d(kernel_size, stride=None, padding=0)
    输入输出尺寸关系:
    Hout=(Hin1)stride[0]2padding[0]+kernelSize[0] Wout=(Win1)stride[1]2padding[1]+kernelSize[1]
  6. 三维反池化:
    torch.nn.MaxUnpool3d(kernel_size, stride=None, padding=0)
    输入输出尺寸关系:
    Dout=(Din1)stride[0]2padding[0]+kernelSize[0] Hout=(Hin1)stride[1]2padding[0]+kernelSize[1] Wout=(Win1)stride[2]2padding[2]+kernelSize[2]
  7. 其他各种池化操作见:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-nn/#containers

非线性激活层

  1. torch.nn.ReLU(inplace=False):ReLU(x)=max(0,x)
  2. torch.nn.ReLU6(inplace=False):ReLU6(x)=min(max(0,x),6)
  3. torch.nn.ELU(alpha=1.0, inplace=False):f(x)=max(0,x)+min(0,alpha(ex1))
  4. torch.nn.PReLU(num_parameters=1, init=0.25):f(x)=max(0,x)+negativeslopemin(0,x)
  5. torch.nn.Threshold(threshold, value, inplace=False):relu的一般情况;
  6. torch.nn.Hardtanh(min_value=-1, max_value=1, inplace=False);
  7. torch.nn.Sigmoid();
  8. orch.nn.Tanh();
  9. torch.nn.LogSigmoid();
  10. torch.nn.Softplus(beta=1, threshold=20);
  11. torch.nn.Softshrink(lambd=0.5);
  12. torch.nn.Softsign();
  13. torch.nn.Softshrink(lambd=0.5);
  14. torch.nn.Softmin();
  15. torch.nn.Softmax();
  16. torch.nn.LogSoftmax();

BN层

  1. 一维BN层:torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True);
  2. 二维BN层:torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True);
  3. 三维BN层:torch.nn.BatchNorm3d(num_features, eps=1e-05, momentum=0.1, affine=True);

插值层

  1. 二维最近邻插值层:torch.nn.UpsamplingNearest2d(size=None, scale_factor=None);
  2. 二维双线性插值层:torch.nn.UpsamplingBilinear2d(size=None, scale_factor=None);

其他重要层

  1. 全链接层:torch.nn.Linear(in_features, out_features, bias=True);
  2. Dropout层:
    torch.nn.Dropout(p=0.5, inplace=False)
    torch.nn.Dropout2d(p=0.5, inplace=False)
    torch.nn.Dropout3d(p=0.5, inplace=False)
  3. 范数距离层:torch.nn.PairwiseDistance(p=2, eps=1e-06);
  4. L1损失层:torch.nn.L1Loss(size_average=True);
  5. L2损失层:torch.nn.MSELoss(size_average=True);
  6. 交叉熵损失层:torch.nn.CrossEntropyLoss(weight=None, size_average=True);
  7. 损失层用法及大量其它损失层见中文文档;

多GPU使用

关键函数:torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)
解释:此容器通过将mini-batch划分到不同的设备上来实现给定module的并行。在forward过程中,module会在每个设备上都复制一遍,每个副本都会处理部分输入。在backward过程中,副本上的梯度会累加到原始module上,具体用法见多GPU实例博客;

torch.nn.functional

其中有大量功能函数,同torch.nn的函数功能相同,用法不同。

原创粉丝点击