java--集合--ConcurrentHashMap(1.8)

来源:互联网 发布:c语言define函数 编辑:程序博客网 时间:2024/06/06 12:21

概述

ConcurrentHashMap可以高效地支持并发操作

1.8中

底层存储结构采用数组+链表+红黑树算法采用CAS+Synchronized针对HashMap中并发时,put覆盖,    采用无hash碰撞时,采用CAS插入    有碰撞时同步锁的方式插入扩容复制时链表循环    将复制任务根据CPU数量拆分,让任务并行    长链表转化为红黑树

1.7中

采用分段锁的概念 (http://blog.csdn.net/rod_john/article/details/78823959)

类结构

成员变量

transient volatile Node

关键类

Node

Node担负着重要角色:key-value键值对在Node内部类中,其属性value、next都是带有volatile的。同时其对value的setter方法进行了特殊处理,不允许直接调用其setter方法来修改value的值。最后Node还提供了find方法来赋值map.get()。
    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        volatile V val;             //带有volatile,保证可见性        volatile Node<K,V> next;    //下一个节点的指针        Node(int hash, K key, V val, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.val = val;            this.next = next;        }        public final K getKey()       { return key; }        public final V getValue()     { return val; }        public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }        public final String toString(){ return key + "=" + val; }        /** 不允许修改value的值 */        public final V setValue(V value) {            throw new UnsupportedOperationException();        }        public final boolean equals(Object o) {            Object k, v, u; Map.Entry<?,?> e;            return ((o instanceof Map.Entry) &&                    (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&                    (v = e.getValue()) != null &&                    (k == key || k.equals(key)) &&                    (v == (u = val) || v.equals(u)));        }        /**  赋值get()方法 */        Node<K,V> find(int h, Object k) {            Node<K,V> e = this;            if (k != null) {                do {                    K ek;                    if (e.hash == h &&                            ((ek = e.key) == k || (ek != null && k.equals(ek))))                        return e;                } while ((e = e.next) != null);            }            return null;        }    }

TreeNode

我们在学习HashMap的时候就知道,HashMap的核心数据结构就是链表。在ConcurrentHashMap中就不一样了,如果链表的数据过长是会转换为红黑树来处理。当它并不是直接转换,而是将这些链表的节点包装成TreeNode放在TreeBin对象中,然后由TreeBin完成红黑树的转换。所以TreeNode也必须是ConcurrentHashMap的一个核心类,其为树节点类,定义如下:源码展示TreeNode继承Node,且提供了findTreeNode用来查找查找hash为h,key为k的节点。
static final class TreeNode<K,V> extends Node<K,V> {        TreeNode<K,V> parent;  // red-black tree links        TreeNode<K,V> left;        TreeNode<K,V> right;        TreeNode<K,V> prev;    // needed to unlink next upon deletion        boolean red;        TreeNode(int hash, K key, V val, Node<K,V> next,                 TreeNode<K,V> parent) {            super(hash, key, val, next);            this.parent = parent;        }        Node<K,V> find(int h, Object k) {            return findTreeNode(h, k, null);        }        //查找hash为h,key为k的节点        final TreeNode<K,V> findTreeNode(int h, Object k, Class<?> kc) {            if (k != null) {                TreeNode<K,V> p = this;                do  {                    int ph, dir; K pk; TreeNode<K,V> q;                    TreeNode<K,V> pl = p.left, pr = p.right;                    if ((ph = p.hash) > h)                        p = pl;                    else if (ph < h)                        p = pr;                    else if ((pk = p.key) == k || (pk != null && k.equals(pk)))                        return p;                    else if (pl == null)                        p = pr;                    else if (pr == null)                        p = pl;                    else if ((kc != null ||                            (kc = comparableClassFor(k)) != null) &&                            (dir = compareComparables(kc, k, pk)) != 0)                        p = (dir < 0) ? pl : pr;                    else if ((q = pr.findTreeNode(h, k, kc)) != null)                        return q;                    else                        p = pl;                } while (p != null);            }            return null;        }    }

TreeBin

该类并不负责key-value的键值对包装,它用于在链表转换为红黑树时包装TreeNode节点,也就是说ConcurrentHashMap红黑树存放是TreeBin,不是TreeNode。该类封装了一系列的方法,包括putTreeVal、lookRoot、UNlookRoot、remove、balanceInsetion、balanceDeletion。由于TreeBin的代码太长我们这里只展示构造方法(构造方法就是构造红黑树的过程):

通过构造方法是不是发现了部分端倪,构造方法就是在构造一个红黑树的过程。

static final class TreeBin<K,V> extends Node<K,V> {        TreeNode<K, V> root;        volatile TreeNode<K, V> first;        volatile Thread waiter;        volatile int lockState;        static final int WRITER = 1; // set while holding write lock        static final int WAITER = 2; // set when waiting for write lock        static final int READER = 4; // increment value for setting read lock        TreeBin(TreeNode<K, V> b) {            super(TREEBIN, null, null, null);            this.first = b;            TreeNode<K, V> r = null;            for (TreeNode<K, V> x = b, next; x != null; x = next) {                next = (TreeNode<K, V>) x.next;                x.left = x.right = null;                if (r == null) {                    x.parent = null;                    x.red = false;                    r = x;                } else {                    K k = x.key;                    int h = x.hash;                    Class<?> kc = null;                    for (TreeNode<K, V> p = r; ; ) {                        int dir, ph;                        K pk = p.key;                        if ((ph = p.hash) > h)                            dir = -1;                        else if (ph < h)                            dir = 1;                        else if ((kc == null &&                                (kc = comparableClassFor(k)) == null) ||                                (dir = compareComparables(kc, k, pk)) == 0)                            dir = tieBreakOrder(k, pk);                        TreeNode<K, V> xp = p;                        if ((p = (dir <= 0) ? p.left : p.right) == null) {                            x.parent = xp;                            if (dir <= 0)                                xp.left = x;                            else                                xp.right = x;                            r = balanceInsertion(r, x);                            break;                        }                    }                }            }            this.root = r;            assert checkInvariants(root);        }        /** 省略很多代码 */    }

ForwardingNode

这是一个真正的辅助类,该类仅仅只存活在ConcurrentHashMap扩容操作时。只是一个标志节点,并且指向nextTable,它提供find方法而已。该类也是集成Node节点,其hash为-1,key、value、next均为null。如下:

static final class ForwardingNode<K,V> extends Node<K,V> {        final Node<K,V>[] nextTable;        ForwardingNode(Node<K,V>[] tab) {            super(MOVED, null, null, null);            this.nextTable = tab;        }        Node<K,V> find(int h, Object k) {            // loop to avoid arbitrarily deep recursion on forwarding nodes            outer: for (Node<K,V>[] tab = nextTable;;) {                Node<K,V> e; int n;                if (k == null || tab == null || (n = tab.length) == 0 ||                        (e = tabAt(tab, (n - 1) & h)) == null)                    return null;                for (;;) {                    int eh; K ek;                    if ((eh = e.hash) == h &&                            ((ek = e.key) == k || (ek != null && k.equals(ek))))                        return e;                    if (eh < 0) {                        if (e instanceof ForwardingNode) {                            tab = ((ForwardingNode<K,V>)e).nextTable;                            continue outer;                        }                        else                            return e.find(h, k);                    }                    if ((e = e.next) == null)                        return null;                }            }        }    }

机制

CAS

在ConcurrentHashMap中,随处可以看到U, 大量使用了U.compareAndSwapXXX的方法,这个方法是利用一个CAS算法实现无锁化的修改值的操作,他可以大大降低锁代理的性能消耗。这个算法的基本思想就是不断地去比较当前内存中的变量值与你指定的一个变量值是否相等,如果相等,则接受你指定的修改的值,否则拒绝你的操作。因为当前线程中的值已经不是最新的值,你的修改很可能会覆盖掉其他线程修改的结果。这一点与乐观锁,SVN的思想是比较类似的。

Unsafe

ConcurrentHashMap定义了三个原子操作,用于对指定位置的节点进行操作。正是这些原子操作保证了ConcurrentHashMap的线程安全。
@SuppressWarnings("unchecked")     //获得在i位置上的Node节点     static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {         return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);     }      //利用CAS算法设置i位置上的Node节点。之所以能实现并发是因为他指定了原来这个节点的值是多少      //在CAS算法中,会比较内存中的值与你指定的这个值是否相等,如果相等才接受你的修改,否则拒绝你的修改      //因此当前线程中的值并不是最新的值,这种修改可能会覆盖掉其他线程的修改结果  有点类似于SVN     static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,                                         Node<K,V> c, Node<K,V> v) {         return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);     }      //利用volatile方法设置节点位置的值     static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {         U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);     }  

功能实现

put

ConcurrentHashMap的put操作与HashMap并没有多大区别,其核心思想依然是根据hash值计算节点插入在table的位置,如果该位置为空,则直接插入,否则插入到链表或者树中。但是ConcurrentHashMap会涉及到多线程情况就会复杂很多。
    public V put(K key, V value) {        return putVal(key, value, false);    }    /** Implementation for put and putIfAbsent */    final V putVal(K key, V value, boolean onlyIfAbsent) {        if (key == null || value == null) throw new NullPointerException();        int hash = spread(key.hashCode());        int binCount = 0;        for (Node<K,V>[] tab = table;;) {            Node<K,V> f; int n, i, fh;            if (tab == null || (n = tab.length) == 0)                tab = initTable();            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {                if (casTabAt(tab, i, null,                             new Node<K,V>(hash, key, value, null)))                    break;                   // no lock when adding to empty bin            }            else if ((fh = f.hash) == MOVED)                tab = helpTransfer(tab, f);            else {                V oldVal = null;                synchronized (f) {                    if (tabAt(tab, i) == f) {                        if (fh >= 0) {                            binCount = 1;                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                if (e.hash == hash &&                                    ((ek = e.key) == key ||                                     (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    if (!onlyIfAbsent)                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                if ((e = e.next) == null) {                                    pred.next = new Node<K,V>(hash, key,                                                              value, null);                                    break;                                }                            }                        }                        else if (f instanceof TreeBin) {                            Node<K,V> p;                            binCount = 2;                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                           value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }                        }                    }                }                if (binCount != 0) {                    if (binCount >= TREEIFY_THRESHOLD)                        treeifyBin(tab, i);                    if (oldVal != null)                        return oldVal;                    break;                }            }        }        addCount(1L, binCount);        return null;    }

null处理

if (key == null || value == null) throw new NullPointerException();

自定义hash

int hash = spread(key.hashCode());return (h ^ (h >>> 16)) & HASH_BITS;static final int HASH_BITS = 0x7fffffff; // usable bits of normal node hash

遍历table

如果table为空,初始化

如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
    /**     * Initializes table, using the size recorded in sizeCtl.     */    private final Node<K,V>[] initTable() {        Node<K,V>[] tab; int sc;        while ((tab = table) == null || tab.length == 0) {            if ((sc = sizeCtl) < 0)                Thread.yield(); // lost initialization race; just spin            else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {                try {                    if ((tab = table) == null || tab.length == 0) {                        int n = (sc > 0) ? sc : DEFAULT_CAPACITY;                        @SuppressWarnings("unchecked")                        Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];                        table = tab = nt;                        sc = n - (n >>> 2);                    }                } finally {                    sizeCtl = sc;                }                break;            }        }        return tab;    }

hash未碰撞,则通过CAS插入相应的数据;

如果相应位置的Node还未初始化,则通过CAS插入相应的数据;
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {    if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))        break;                   // no lock when adding to empty bin}static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,Node<K,V> c, Node<K,V> v) {    return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);}

hash碰撞

其他线程在扩容

如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作

else if ((fh = f.hash) == MOVED)    tab = helpTransfer(tab, f);
 /**  * Helps transfer if a resize is in progress.  */final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {     Node<K,V>[] nextTab; int sc;     if (tab != null && (f instanceof ForwardingNode) &&         (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {         int rs = resizeStamp(tab.length);         while (nextTab == nextTable && table == tab &&                (sc = sizeCtl) < 0) {             if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                 sc == rs + MAX_RESIZERS || transferIndex <= 0)                 break;             if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {                 transfer(tab, nextTab);                 break;             }         }         return nextTab;     }     return table; }
    /**     * Moves and/or copies the nodes in each bin to new table. See     * above for explanation.     */    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {        int n = tab.length, stride;        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)            stride = MIN_TRANSFER_STRIDE; // subdivide range        if (nextTab == null) {            // initiating            try {                @SuppressWarnings("unchecked")                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];                nextTab = nt;            } catch (Throwable ex) {      // try to cope with OOME                sizeCtl = Integer.MAX_VALUE;                return;            }            nextTable = nextTab;            transferIndex = n;        }        int nextn = nextTab.length;        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);        boolean advance = true;        boolean finishing = false; // to ensure sweep before committing nextTab        for (int i = 0, bound = 0;;) {            Node<K,V> f; int fh;            while (advance) {                int nextIndex, nextBound;                if (--i >= bound || finishing)                    advance = false;                else if ((nextIndex = transferIndex) <= 0) {                    i = -1;                    advance = false;                }                else if (U.compareAndSwapInt                         (this, TRANSFERINDEX, nextIndex,                          nextBound = (nextIndex > stride ?                                       nextIndex - stride : 0))) {                    bound = nextBound;                    i = nextIndex - 1;                    advance = false;                }            }            if (i < 0 || i >= n || i + n >= nextn) {                int sc;                if (finishing) {                    nextTable = null;                    table = nextTab;                    sizeCtl = (n << 1) - (n >>> 1);                    return;                }                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)                        return;                    finishing = advance = true;                    i = n; // recheck before commit                }            }            else if ((f = tabAt(tab, i)) == null)                advance = casTabAt(tab, i, null, fwd);            else if ((fh = f.hash) == MOVED)                advance = true; // already processed            else {                synchronized (f) {                    if (tabAt(tab, i) == f) {                        Node<K,V> ln, hn;                        if (fh >= 0) {                            int runBit = fh & n;                            Node<K,V> lastRun = f;                            for (Node<K,V> p = f.next; p != null; p = p.next) {                                int b = p.hash & n;                                if (b != runBit) {                                    runBit = b;                                    lastRun = p;                                }                            }                            if (runBit == 0) {                                ln = lastRun;                                hn = null;                            }                            else {                                hn = lastRun;                                ln = null;                            }                            for (Node<K,V> p = f; p != lastRun; p = p.next) {                                int ph = p.hash; K pk = p.key; V pv = p.val;                                if ((ph & n) == 0)                                    ln = new Node<K,V>(ph, pk, pv, ln);                                else                                    hn = new Node<K,V>(ph, pk, pv, hn);                            }                            setTabAt(nextTab, i, ln);                            setTabAt(nextTab, i + n, hn);                            setTabAt(tab, i, fwd);                            advance = true;                        }                        else if (f instanceof TreeBin) {                            TreeBin<K,V> t = (TreeBin<K,V>)f;                            TreeNode<K,V> lo = null, loTail = null;                            TreeNode<K,V> hi = null, hiTail = null;                            int lc = 0, hc = 0;                            for (Node<K,V> e = t.first; e != null; e = e.next) {                                int h = e.hash;                                TreeNode<K,V> p = new TreeNode<K,V>                                    (h, e.key, e.val, null, null);                                if ((h & n) == 0) {                                    if ((p.prev = loTail) == null)                                        lo = p;                                    else                                        loTail.next = p;                                    loTail = p;                                    ++lc;                                }                                else {                                    if ((p.prev = hiTail) == null)                                        hi = p;                                    else                                        hiTail.next = p;                                    hiTail = p;                                    ++hc;                                }                            }                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :                                (hc != 0) ? new TreeBin<K,V>(lo) : t;                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :                                (lc != 0) ? new TreeBin<K,V>(hi) : t;                            setTabAt(nextTab, i, ln);                            setTabAt(nextTab, i + n, hn);                            setTabAt(tab, i, fwd);                            advance = true;                        }                    }                }            }        }    }

同步添加键值对

如果是链表
如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。
                        if (fh >= 0) {                            binCount = 1;                            for (Node<K,V> e = f;; ++binCount) {                                K ek;                                if (e.hash == hash &&                                    ((ek = e.key) == key ||                                     (ek != null && key.equals(ek)))) {                                    oldVal = e.val;                                    if (!onlyIfAbsent)                                        e.val = value;                                    break;                                }                                Node<K,V> pred = e;                                if ((e = e.next) == null) {                                    pred.next = new Node<K,V>(hash, key,                                                              value, null);                                    break;                                }                            }                        }

如果是红黑树

如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
                            Node<K,V> p;                            binCount = 2;                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,                                                           value)) != null) {                                oldVal = p.val;                                if (!onlyIfAbsent)                                    p.val = value;                            }

2、如果相应位置的Node不为空,且当前该节点不处于移动状态,则对该节点加synchronized锁,如果该节点的hash不小于0,则遍历链表更新节点或插入新节点;

if (fh >= 0) {    binCount = 1;    for (Node<K,V> e = f;; ++binCount) {        K ek;        if (e.hash == hash &&            ((ek = e.key) == key ||             (ek != null && key.equals(ek)))) {            oldVal = e.val;            if (!onlyIfAbsent)                e.val = value;            break;        }        Node<K,V> pred = e;        if ((e = e.next) == null) {            pred.next = new Node<K,V>(hash, key, value, null);            break;        }    }}

3、如果该节点是TreeBin类型的节点,说明是红黑树结构,则通过putTreeVal方法往红黑树中插入节点;

else if (f instanceof TreeBin) {    Node<K,V> p;    binCount = 2;    if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) {        oldVal = p.val;        if (!onlyIfAbsent)            p.val = value;    }}

链表转树

4、如果binCount不为0,说明put操作对数据产生了影响,如果当前链表的个数达到8个,则通过treeifyBin方法转化为红黑树,如果oldVal不为空,说明是一次更新操作,没有对元素个数产生影响,则直接返回旧值;

if (binCount != 0) {    if (binCount >= TREEIFY_THRESHOLD)        treeifyBin(tab, i);    if (oldVal != null)        return oldVal;    break;}

计数

5、如果插入的是一个新节点,则执行addCount()方法尝试更新元素个数baseCount;

  if (binCount != 0) {      if (binCount >= TREEIFY_THRESHOLD)          treeifyBin(tab, i);      if (oldVal != null)          return oldVal;      break;  }
    private final void addCount(long x, int check) {        CounterCell[] as; long b, s;        // 更新baseCount        //check >= 0 :则需要进行扩容操作        if (check >= 0) {            Node<K,V>[] tab, nt; int n, sc;            while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&                    (n = tab.length) < MAXIMUM_CAPACITY) {                int rs = resizeStamp(n);                if (sc < 0) {                    if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||                            sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||                            transferIndex <= 0)                        break;                    if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))                        transfer(tab, nt);                }                //当前线程是唯一的或是第一个发起扩容的线程  此时nextTable=null                else if (U.compareAndSwapInt(this, SIZECTL, sc,                        (rs << RESIZE_STAMP_SHIFT) + 2))                    transfer(tab, null);                s = sumCount();            }        }    }

扩容

机制

HashTable容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

参考

1.7/1.8不同
http://www.jianshu.com/p/e694f1e868ec
http://cmsblogs.com/?p=2283
http://blog.csdn.net/u010723709/article/details/48007881

1.8扩容
http://wuzhaoyang.me/2016/09/05/java-collection-map-2.html

原创粉丝点击