熵的知识

来源:互联网 发布:群发qq消息软件 编辑:程序博客网 时间:2024/06/14 15:48

交叉熵(Cross-Entropy)

交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。

1.什么是信息量?

假设X是一个离散型随机变量,其取值集合为X,概率分布函数为p(x)=Pr(X=x),xX,我们定义事件X=x0的信息量为: 
I(x0)=log(p(x0)),可以理解为,一个事件发生的概率越大,则它所携带的信息量就越小,而当p(x0)=1时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。举个例子,小明平时不爱学习,考试经常不及格,而小王是个勤奋学习的好学生,经常得满分,所以我们可以做如下假设: 
事件A:小明考试及格,对应的概率P(xA)=0.1,信息量为I(xA)=log(0.1)=3.3219 
事件B:小王考试及格,对应的概率P(xB)=0.999,信息量为I(xB)=log(0.999)=0.0014 
可以看出,结果非常符合直观:小明及格的可能性很低(十次考试只有一次及格),因此如果某次考试及格了(大家都会说:XXX竟然及格了!),必然会引入较大的信息量,对应的I值也较高。而对于小王而言,考试及格是大概率事件,在事件B发生前,大家普遍认为事件B的发生几乎是确定的,因此当某次考试小王及格这个事件发生时并不会引入太多的信息量,相应的I值也非常的低。

2.什么是熵?

那么什么又是熵呢?还是通过上边的例子来说明,假设小明的考试结果是一个0-1分布XA只有两个取值{0:不及格,1:及格},在某次考试结果公布前,小明的考试结果有多大的不确定度呢?你肯定会说:十有八九不及格!因为根据先验知识,小明及格的概率仅有0.1,90%的可能都是不及格的。怎么来度量这个不确定度?求期望!不错,我们对所有可能结果带来的额外信息量求取均值(期望),其结果不就能够衡量出小明考试成绩的不确定度了吗。 
即: 
HA(x)=[p(xA)log(p(xA))+(1p(xA))log(1p(xA))]=0.4690 
对应小王的熵: 
HB(x)=[p(xB)log(p(xB))+(1p(xB))log(1p(xB))]=0.0114 
虽然小明考试结果的不确定性较低,毕竟十次有9次都不及格,但是也比不上小王(1000次考试只有一次才可能不及格,结果相当的确定) 
我们再假设一个成绩相对普通的学生小东,他及格的概率是P(xC)=0.5,即及格与否的概率是一样的,对应的熵: 
HC(x)=[p(xC)log(p(xC))+(1p(xC))log(1p(xC))]=1 
其熵为1,他的不确定性比前边两位同学要高很多,在成绩公布之前,很难准确猜测出他的考试结果。 
可以看出,熵其实是信息量的期望值,它是一个随机变量的确定性的度量。熵越大,变量的取值越不确定,反之就越确定。

对于一个随机变量X而言,它的所有可能取值的信息量的期望(E[I(x)])就称为熵。 
X的熵定义为: 
H(X)=Eplog1p(x)=xXp(x)logp(x) 
如果p(x)是连续型随机变量的pdf,则熵定义为: 
H(X)=xXp(x)logp(x)dx 
为了保证有效性,这里约定当p(x)0,p(x)logp(x)0 
当X为0-1分布时,熵与概率p的关系如下图: 
这里写图片描述 
可以看出,当两种取值的可能性相等时,不确定度最大(此时没有任何先验知识),这个结论可以推广到多种取值的情况。在图中也可以看出,当p=0或1时,熵为0,即此时X完全确定。 
熵的单位随着公式中log运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为e时,单位为“奈特”。

3.什么是相对熵?

相对熵(relative entropy)又称为KL散度(Kullback-Leibler divergence),KL距离,是两个随机分布间距离的度量。记为DKL(p||q)。它度量当真实分布为p时,假设分布q的无效性。 
DKL(p||q)=Ep[logp(x)q(x)]=xXp(x)logp(x)q(x) 
=xX[p(x)logp(x)p(x)logq(x)] 
=xXp(x)logp(x)xXp(x)logq(x) 
=H(p)xXp(x)logq(x) 
=H(p)+Ep[logq(x)] 
=Hp(q)H(p) 
并且为了保证连续性,做如下约定: 
0log00=00log0q=0plogp0= 
显然,当p=q时,两者之间的相对熵DKL(p||q)=0 
上式最后的Hp(q)表示在p分布下,使用q进行编码需要的bit数,而H(p)表示对真实分布p所需要的最小编码bit数。基于此,相对熵的意义就很明确了:DKL(p||q)表示在真实分布为p的前提下,使用q分布进行编码相对于使用真实分布p进行编码(即最优编码)所多出来的bit数。

4. 什么是交叉熵?

交叉熵容易跟相对熵搞混,二者联系紧密,但又有所区别。假设有两个分布pq,则它们在给定样本集上的交叉熵定义如下: 
CEH(p,q)=Ep[logq]=xXp(x)logq(x)=H(p)+DKL(p||q) 
可以看出,交叉熵与上一节定义的相对熵仅相差了H(p),当p已知时,可以把H(p)看做一个常数,此时交叉熵与KL距离在行为上是等价的,都反映了分布p,q的相似程度。最小化交叉熵等于最小化KL距离。它们都将在p=q时取得最小值H(p)(p=q时KL距离为0),因此有的工程文献中将最小化KL距离的方法称为Principle of Minimum Cross-Entropy (MCE)或Minxent方法。 
特别的,在logistic regression中, 
p:真实样本分布,服从参数为p的0-1分布,即XB(1,p) 
q:待估计的模型,服从参数为q的0-1分布,即XB(1,q) 
两者的交叉熵为: 
CEH(p,q) 
=xXp(x)logq(x) 
=[Pp(x=1)logPq(x=1)+Pp(x=0)logPq(x=0)] 
=[plogq+(1p)log(1q)] 
=[yloghθ(x)+(1y)log(1hθ(x))] 
对所有训练样本取均值得: 
1mi=1m[y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))] 
这个结果与通过最大似然估计方法求出来的结果一致。

1.从方差代价函数说起

代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:

其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。

在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:

然后更新w、b:

w <—— w - η* ∂C/∂w = w - η * a *σ′(z)

b <—— b - η* ∂C/∂b = b - η * a * σ′(z)

因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会很小(如下图标出来的两端,几近于平坦),这样会使得w和b更新非常慢(因为η * a * σ′(z)这一项接近于0)。

2.交叉熵代价函数(cross-entropy cost function)

为了克服这个缺点,引入了交叉熵代价函数(下面的公式对应一个神经元,多输入单输出):

其中y为期望的输出,a为神经元实际输出【a=σ(z), where z=∑Wj*Xj+b】

与方差代价函数一样,交叉熵代价函数同样有两个性质

  • 非负性。(所以我们的目标就是最小化代价函数)
  • 当真实输出a与期望输出y接近的时候,代价函数接近于0.(比如y=0,a~0;y=1,a~1时,代价函数都接近0)。

另外,它可以克服方差代价函数更新权重过慢的问题。我们同样看看它的导数:

可以看到,导数中没有σ′(z)这一项,权重的更新是受σ(z)−y这一项影响,即受误差的影响。所以当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

3.总结

  • 当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢。

  • 不过,你也许会问,为什么是交叉熵函数?导数中不带σ′(z)项的函数有无数种,怎么就想到用交叉熵函数?这自然是有来头的,更深入的讨论就不写了,少年请自行了解。

  • 另外,交叉熵函数的形式是−[ylna+(1−y)ln(1−a)]而不是 −[alny+(1−a)ln(1−y)],为什么?因为当期望输出的y=0时,lny没有意义;当期望y=1时,ln(1-y)没有意义。而因为a是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。

4.还要说说:log-likelihood cost

对数似然函数也常用来作为softmax回归的代价函数,在上面的讨论中,我们最后一层(也就是输出)是通过sigmoid函数,因此采用了交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的是代价函数是log-likelihood cost。

In fact, it’s useful to think of a softmax output layer with log-likelihood cost as being quite similar to a sigmoid output layer with cross-entropy cost。

其实这两者是一致的,logistic回归用的就是sigmoid函数,softmax回归是logistic回归的多类别推广。log-likelihood代价函数在二类别时就可以化简为交叉熵代价函数的形式。具体可以参考UFLDL教程

转载:http://blog.csdn.net/rtygbwwwerr/article/details/50778098

1.从方差代价函数说起

代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:

其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。

在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:

然后更新w、b:

w <—— w - η* ∂C/∂w = w - η * a *σ′(z)

b <—— b - η* ∂C/∂b = b - η * a * σ′(z)

因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会很小(如下图标出来的两端,几近于平坦),这样会使得w和b更新非常慢(因为η * a * σ′(z)这一项接近于0)。

2.交叉熵代价函数(cross-entropy cost function)

为了克服这个缺点,引入了交叉熵代价函数(下面的公式对应一个神经元,多输入单输出):

其中y为期望的输出,a为神经元实际输出【a=σ(z), where z=∑Wj*Xj+b】

与方差代价函数一样,交叉熵代价函数同样有两个性质

  • 非负性。(所以我们的目标就是最小化代价函数)
  • 当真实输出a与期望输出y接近的时候,代价函数接近于0.(比如y=0,a~0;y=1,a~1时,代价函数都接近0)。

另外,它可以克服方差代价函数更新权重过慢的问题。我们同样看看它的导数:

可以看到,导数中没有σ′(z)这一项,权重的更新是受σ(z)−y这一项影响,即受误差的影响。所以当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

3.总结

  • 当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢。

  • 不过,你也许会问,为什么是交叉熵函数?导数中不带σ′(z)项的函数有无数种,怎么就想到用交叉熵函数?这自然是有来头的,更深入的讨论就不写了,少年请自行了解。

  • 另外,交叉熵函数的形式是−[ylna+(1−y)ln(1−a)]而不是 −[alny+(1−a)ln(1−y)],为什么?因为当期望输出的y=0时,lny没有意义;当期望y=1时,ln(1-y)没有意义。而因为a是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。

4.还要说说:log-likelihood cost

对数似然函数也常用来作为softmax回归的代价函数,在上面的讨论中,我们最后一层(也就是输出)是通过sigmoid函数,因此采用了交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的是代价函数是log-likelihood cost。

In fact, it’s useful to think of a softmax output layer with log-likelihood cost as being quite similar to a sigmoid output layer with cross-entropy cost。

其实这两者是一致的,logistic回归用的就是sigmoid函数,softmax回归是logistic回归的多类别推广。log-likelihood代价函数在二类别时就可以化简为交叉熵代价函数的形式。具体可以参考UFLDL教程

1.从方差代价函数说起

代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:

其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】。

在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数:

然后更新w、b:

w <—— w - η* ∂C/∂w = w - η * a *σ′(z)

b <—— b - η* ∂C/∂b = b - η * a * σ′(z)

因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会很小(如下图标出来的两端,几近于平坦),这样会使得w和b更新非常慢(因为η * a * σ′(z)这一项接近于0)。

2.交叉熵代价函数(cross-entropy cost function)

为了克服这个缺点,引入了交叉熵代价函数(下面的公式对应一个神经元,多输入单输出):

其中y为期望的输出,a为神经元实际输出【a=σ(z), where z=∑Wj*Xj+b】

与方差代价函数一样,交叉熵代价函数同样有两个性质

  • 非负性。(所以我们的目标就是最小化代价函数)
  • 当真实输出a与期望输出y接近的时候,代价函数接近于0.(比如y=0,a~0;y=1,a~1时,代价函数都接近0)。

另外,它可以克服方差代价函数更新权重过慢的问题。我们同样看看它的导数:

可以看到,导数中没有σ′(z)这一项,权重的更新是受σ(z)−y这一项影响,即受误差的影响。所以当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

3.总结

  • 当我们用sigmoid函数作为神经元的激活函数时,最好使用交叉熵代价函数来替代方差代价函数,以避免训练过程太慢。

  • 不过,你也许会问,为什么是交叉熵函数?导数中不带σ′(z)项的函数有无数种,怎么就想到用交叉熵函数?这自然是有来头的,更深入的讨论就不写了,少年请自行了解。

  • 另外,交叉熵函数的形式是−[ylna+(1−y)ln(1−a)]而不是 −[alny+(1−a)ln(1−y)],为什么?因为当期望输出的y=0时,lny没有意义;当期望y=1时,ln(1-y)没有意义。而因为a是sigmoid函数的实际输出,永远不会等于0或1,只会无限接近于0或者1,因此不存在这个问题。

4.还要说说:log-likelihood cost

对数似然函数也常用来作为softmax回归的代价函数,在上面的讨论中,我们最后一层(也就是输出)是通过sigmoid函数,因此采用了交叉熵代价函数。而深度学习中更普遍的做法是将softmax作为最后一层,此时常用的是代价函数是log-likelihood cost。

In fact, it’s useful to think of a softmax output layer with log-likelihood cost as being quite similar to a sigmoid output layer with cross-entropy cost。

其实这两者是一致的,logistic回归用的就是sigmoid函数,softmax回归是logistic回归的多类别推广。log-likelihood代价函数在二类别时就可以化简为交叉熵代价函数的形式。具体可以参考UFLDL教程


转载:http://blog.csdn.net/u012162613/article/details/44239919

原创粉丝点击