Tensorflow中的优化器子类

来源:互联网 发布:淘宝个人店铺 注册商标 编辑:程序博客网 时间:2024/05/18 03:10

tensorflow中包含几个优化算法,今天就具体看一下这些算法。

GradientDescentOptimizer ,AdagradOptimizer ,MomentumOptimizer ,AdamOptimizer ,RMSPropOptimizer。

1.GradientDescent

梯度下降法是一种最优化问题求解的算法。有批量梯度和随机梯度两种不同的迭代思路。他们有以下的差异:
批量梯度收敛速度慢,随机梯度收敛速度快。
批量梯度是在θ更新前对所有样例汇总误差,而随机梯度下降的权值是通过考查某个样本来更新的
批量梯度的开销大,随机梯度的开销小。
使用梯度下降法时需要寻找出一个最好的学习效率。这样可以使得使用最少的迭代次数达到我们需要的精度。

2.Adagrad

Adagrad其实是对学习率进行了一个约束。即:

n_t=n_{t-1}+g_t^2

\Delta{\theta_t}=-\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t

此处,对g_t从1到t进行一个递推形成一个约束项regularizer,-\frac{1}{\sqrt{\sum_{r=1}^t(g_r)^2+\epsilon}}\epsilon用来保证分母非0

特点:

  • 前期g_t较小的时候, regularizer较大,能够放大梯度
  • 后期g_t较大的时候,regularizer较小,能够约束梯度
  • 适合处理稀疏梯度
缺点:
  • 由公式可以看出,仍依赖于人工设置一个全局学习率
  • \eta设置过大的话,会使regularizer过于敏感,对梯度的调节太大
  • 中后期,分母上梯度平方的累加将会越来越大,使gradient\to0,使得训练提前结束

3.Momentum

momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

m_t=\mu*m_{t-1}+g_t

\Delta{\theta_t}=-\eta*m_t

其中,\mu是动量因子

特点:

  • 下降初期时,使用上一次参数更新,下降方向一致,乘上较大的\mu能够进行很好的加速
  • 下降中后期时,在局部最小值来回震荡的时候,gradient\to0\mu使得更新幅度增大,跳出陷阱
  • 在梯度改变方向的时候,\mu能够减少更新 总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛


4.Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。 Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

\Delta{\theta_t} = -\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:

E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2

\Delta{x_t}=-\frac{\sqrt{\sum_{r=1}^{t-1}\Delta{x_r}}}{\sqrt{E|g^2|_t+\epsilon}}

其中,E代表求期望。

此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:

  • 训练初中期,加速效果不错,很快
  • 训练后期,反复在局部最小值附近抖动

5.RMSprop

RMSprop可以算作Adadelta的一个特例:

\rho=0.5时,E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):

RMS|g|_t=\sqrt{E|g^2|_t+\epsilon}

此时,这个RMS就可以作为学习率\eta的一个约束:

\Delta{x_t}=-\frac{\eta}{RMS|g|_t}*g_t

特点:

  • 其实RMSprop依然依赖于全局学习率
  • RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
  • 适合处理非平稳目标 - 对于RNN效果很好
6.Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

m_t=\mu*m_{t-1}+(1-\mu)*g_t

n_t=\nu*n_{t-1}+(1-\nu)*g_t^2

\hat{m_t}=\frac{m_t}{1-\mu^t}

\hat{n_t}=\frac{n_t}{1-\nu^t}

\Delta{\theta_t}=-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}*\eta

其中,m_tn_t分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望E|g_t|E|g_t^2|的估计;\hat{m_t}\hat{n_t}是对m_tn_t的校正,这样可以近似为对期望的无偏估计。 可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}对学习率形成一个动态约束,而且有明确的范围。

特点:

  • 结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
  • 对内存需求较小
  • 为不同的参数计算不同的自适应学习率
  • 也适用于大多非凸优化 - 适用于大数据集和高维空间
经验之谈
对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
SGD通常训练时间更长,但是在好的初始化和学习率调度方案的情况下,结果更可靠
如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果
最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了... ...


原创粉丝点击