浅析HashMap

来源:互联网 发布:网络摄像机哪个好 编辑:程序博客网 时间:2024/06/05 06:18

基于数组的ArrayList长于按索引获取对应元素,而在中间位置插入和删除元素,都涉及了对数组整体的移动、复制等操作,相比于链表的插入删除来说代价比较大。基于链表的LinkedList长于随机插入删除,Java的双向链表(LinekdList)只能从头到尾或者从尾到头遍历链表获取元素,相较于ArrayList也是比较慢的。那么有没有一种折中的解决方案,使得插入删除和取元素都比较便捷呢?我认为HashMap可以算是这么一种折中的解决方案。

HashMap概述

HashMap是一个实现了Map接口的哈希表,允许使用null值和null键。除了非同步和允许使用null之外,HashMap类与Hashtable大致相同。HashMap不保证映射的顺序,不保证该顺序恒久不变。

HashMap不是线程安全的,如果想要使用线程安全的HashMap,可以通以下代码来得到:

Map map = Collections.synchronizedMap(new HashMap());

源码实现

HashMap在实现上采用了类似“链表的数组”这种数据结构,也有将之称为“拉链法”的,实现方式如图。

拉链法

当HashMap根据key计算的hash值一样时,就发生了碰撞,这时就会根据如图所示的结构存储存储对应的对象。而这种碰撞发生非常多的话,那么HashMap读取对象的速度就会变慢。在java 8之后,如果一个“桶”的记录过大(TREEIFY_THRESHOLD = 8),HashMap会动态的使用一个专门的treemap实现来替换它。这样可以降低频繁发生碰撞时读对象的时间复杂度,当然,这需要你插入的key实现了Comparable接口,否则这样的优化是你享受不到的~

    // 单向链表的数据结构    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        V value;        // 下个节点的引用        Node<K,V> next;        // 在构造函数中初始化        Node(int hash, K key, V value, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.value = value;            this.next = next;        }        public final K getKey()        { return key; }        public final V getValue()      { return value; }        public final String toString() { return key + "=" + value; }        public final int hashCode() {            return Objects.hashCode(key) ^ Objects.hashCode(value);        }        public final V setValue(V newValue) {            V oldValue = value;            value = newValue;            return oldValue;        }        // 复写equal方法        public final boolean equals(Object o) {            if (o == this)                return true;            if (o instanceof Map.Entry) {                Map.Entry<?,?> e = (Map.Entry<?,?>)o;                if (Objects.equals(key, e.getKey()) &&                    Objects.equals(value, e.getValue()))                    return true;            }            return false;        }    }

重要的属性:

    /**     * The table, initialized on first use, and resized as     * necessary. When allocated, length is always a power of two.     * (We also tolerate length zero in some operations to allow     * bootstrapping mechanics that are currently not needed.)     */    // 存储元素的实体数组    transient Node<K,V>[] table;  /**     * The number of key-value mappings contained in this map.     */    // map的容量    transient int size;    /**     * The next size value at which to resize (capacity * load factor).     *     * @serial     */    // (The javadoc description is true upon serialization.    // Additionally, if the table array has not been allocated, this    // field holds the initial array capacity, or zero signifying    // DEFAULT_INITIAL_CAPACITY.)    // 当实际大小超过此值时,会进行扩容 threshold = 容量 * 加载因子    int threshold;    /**     * The load factor for the hash table.     *     * @serial     */    // 哈希表的加载因子,加载因子在这种实现方式中是数组被填充的程度,哈希表    // 填充的越满,发生冲突的机会越大。在Java的实现中默认的加载因子是0.75    final float loadFactor;

接下来看一下HashMap默认的无参构造函数,看一下HashMap是如何初始化的:

    /**     * Constructs an empty <tt>HashMap</tt> with the default initial capacity     * (16) and the default load factor (0.75).     */    public HashMap() {        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted    }

根据注释来看说是用默认的初始化容量(16)和默认的加载因子(0.75)来构造一个空的哈希Map。虽然注释是这么说的,但是并没有看到其他的动作,特别是上面提到的table这个数组,在构造函数中没有初始化的动作,其实他是在插入元素的时候才真正的初始化这个数组。来看一下我们平时调用的map.put(key,value)是如何实现的:

    public V put(K key, V value) {        return putVal(hash(key), key, value, false, true);    }

具体的实现是putVal,那么看下这个方法:

    /**     * Implements Map.put and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to put     * @param onlyIfAbsent if true, don't change existing value     * @param evict if false, the table is in creation mode.     * @return previous value, or null if none     */    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        Node<K,V>[] tab; Node<K,V> p; int n, i;        // 如果table为空        if ((tab = table) == null || (n = tab.length) == 0)            // 事实上调用了resize(),初始化的动作就是在resize方法中完成的            n = (tab = resize()).length;        // 这里根据哈希计算数组下标还是有点玄机的,留待之后讨论        // 这里如果数组对应的索引下还没有插入值,将值插入        if ((p = tab[i = (n - 1) & hash]) == null)            tab[i] = newNode(hash, key, value, null);        else {// 如果已经有值了,即发生了冲突            Node<K,V> e; K k;            // 如果键值相同            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                e = p;            // HashMap如果频繁的发生碰撞,那么速度就会变慢,在java8 之后            // 如果同一个索引频繁的发生碰撞,那么就会将这个索引底下的链表            // 转换为红黑树,提升搜索的速度。很好,很牛逼的改进!            else if (p instanceof TreeNode)                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {                // 不想注释了,自己看吧                for (int binCount = 0; ; ++binCount) {                    if ((e = p.next) == null) {                        p.next = newNode(hash, key, value, null);                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st                            treeifyBin(tab, hash);                        break;                    }                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            if (e != null) { // existing mapping for key                V oldValue = e.value;                if (!onlyIfAbsent || oldValue == null)                    e.value = value;                afterNodeAccess(e);                return oldValue;            }        }        ++modCount;        if (++size > threshold)            resize();        afterNodeInsertion(evict);        return null;    }

以上简单的看了下HashMap是如何插入一个值的,在计算索引上,HashMap并没有采用我们平时的哈希值对数组长度取余。而是采用了效率比较高的 & 运算,h & (length - 1),在注释中也说了,哈希表的长度必须是2的次幂,这么做的好处是什么呢?首先是h & (length - 1),length是2的次幂,那么length - 1用二进制表示的话必定全是1,而采用&运算的话,无论是0或1和1进行&运算,其结果既可能是0,也可能是1,这样就保证了运算后的均匀性。

在以上的注释中也提到了对table的初始化是在resize方法中完成的,那么看看resize方法:

    /**     * Initializes or doubles table size.  If null, allocates in     * accord with initial capacity target held in field threshold.     * Otherwise, because we are using power-of-two expansion, the     * elements from each bin must either stay at same index, or move     * with a power of two offset in the new table.     *     * @return the table     */    final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        // 原数组不空        if (oldCap > 0) {            // 如果oldCap已经为最大容量            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            // 每次扩容是之前的2倍,一直是2的次幂            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAULT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        // 重新创建table数组,原数组为空,oldThr不为空        // 扩展为oldThr大小        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        // 原数组为空,oldThr为空,全部使用默认值        else {               // zero initial threshold signifies using defaults            newCap = DEFAULT_INITIAL_CAPACITY;            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);        }        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        table = newTab;        if (oldTab != null) {            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;                    // 桶中只有一个元素                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    // 如果第一个节点是TreeNode                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    else { // preserve order                        Node<K,V> loHead = null, loTail = null;                        Node<K,V> hiHead = null, hiTail = null;                        Node<K,V> next;                        do {                            next = e.next;                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    loHead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            else {                                if (hiTail == null)                                    hiHead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                        } while ((e = next) != null);                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }                    }                }            }        }        return newTab;    }

接下来再看一下get方法是如何获取到值得

    /**     * Returns the value to which the specified key is mapped,     * or {@code null} if this map contains no mapping for the key.     *     * <p>More formally, if this map contains a mapping from a key     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :     * key.equals(k))}, then this method returns {@code v}; otherwise     * it returns {@code null}.  (There can be at most one such mapping.)     *     * <p>A return value of {@code null} does not <i>necessarily</i>     * indicate that the map contains no mapping for the key; it's also     * possible that the map explicitly maps the key to {@code null}.     * The {@link #containsKey containsKey} operation may be used to     * distinguish these two cases.     *     * @see #put(Object, Object)     */    public V get(Object key) {        Node<K,V> e;        return (e = getNode(hash(key), key)) == null ? null : e.value;    }    /**     * Implements Map.get and related methods     *     * @param hash hash for key     * @param key the key     * @return the node, or null if none     */    final Node<K,V> getNode(int hash, Object key) {        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;        // hash & (length - 1)得到红黑树的树根或者是链表头        if ((tab = table) != null && (n = tab.length) > 0 &&            (first = tab[(n - 1) & hash]) != null) {            if (first.hash == hash && // always check first node                ((k = first.key) == key || (key != null && key.equals(k))))                return first;            if ((e = first.next) != null) {                if (first instanceof TreeNode)// 红黑树                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);                do { // 链表                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        return e;                } while ((e = e.next) != null);            }        }        return null;    }

浅析暂时就到这了。

原创粉丝点击