NIO入门分享

来源:互联网 发布:windows ftp登录命令 编辑:程序博客网 时间:2024/06/16 08:54

IO & NIO 区别

    1.同步与异步

           同步I/O 每个请求必须逐个地被处理,一个请求的处理会导致整个流程的暂时等待,这些事件无法并发地执行。用户线程发起I/O请求后需要等待或者轮询内核I/O操作完成后才能继续执行。

           异步I/O 多个请求可以并发地执行,一个请求或者任务的执行不会导致整个流程的暂时等待。用户线程发起I/O请求后仍然继续执行,当内核I/O操作完成后会通知用户线程,或者调用用户线程注册的回调函数。

    2.阻塞与非阻塞

           阻塞 某个请求发出后,由于该请求操作需要的条件不满足,请求操作一直阻塞,不会返回,直到条件满足。Java IO的各种流都是阻塞的。这意味着一个线程一旦调用了read(),write()方法,那么该线程就被阻塞住了,直到读取到数据或者数据完整写入了。在此期间线程不能做其他任何事情。

          非阻塞 请求发出后,若该请求需要的条件不满足,则立即返回一个标志信息告知条件不满足,而不会一直等待。一般需要通过循环判断请求条件是否满足来获取请求结果。Java NIO的非阻塞模式使得线程可以通过channel来读数据,并且是返回当前已有的数据,或者什么都不返回如果没有数据可读的话。这样一来线程不会被阻塞住,它可以继续向下执行。通常线程在调用非阻塞操作后,会通知处理其他channel上的IO操作。因此一个线程可以管理多个channel的输入输出。

    3.面向流和面向缓冲区比较(Stream Oriented vs. Buffer Oriented)

          Java IO是面向流的,而Java NIO是面向缓存区的。

         面向流 意思是我们每次从流当中读取一个或多个字节。怎么处理读取到的字节是我们自己的事情。他们不会再任何地方缓存。再有就是我们不能在流数据中向前后移动。如果需要向前后移动读取位置,那么我们需要首先为它创建一个缓存区。

        面向缓冲区 这有些细微差异。数据是被读取到缓存当中以便后续加工。我们可以在缓存中向向后移动。这个特性给我们处理数据提供了更大的弹性空间。当然我们任然需要在使用数据前检查缓存中是否包含我们需要的所有数据。另外需要确保在往缓存中写入数据时避免覆盖了已经写入但是还未被处理的数据。

io

nio

    4.选择器

        Java NIO的选择器允许一个单独的线程同时监视多个通道,可以注册多个通道到同一个选择器上,然后使用一个单独的线程来“选择”已经就绪的通道。这种“选择”机制为一个单独的线程管理多个通道提供了可能。

connect:客户端连接服务端事件,对应值为SelectionKey.OP_CONNECT(8)
accept:服务端接收客户端连接事件,对应值为SelectionKey.OP_ACCEPT(16)
read:读事件,对应值为SelectionKey.OP_READ(1)
write:写事件,对应值为SelectionKey.OP_WRITE(4)
 

    5.零拷贝

    普通IO

    while((n = read(diskfd, buf, BUF_SIZE)) > 0)         write(sockfd, buf , n);

    循环的从磁盘读入文件内容到缓冲区,再将缓冲区的内容发送到socket。但是由于Linux的I/O操作默认是缓冲I/O。这里面主要使用的也就是readwrite两个系统调用,我们并不知道操作系统在其中做了什么。实际上在以上I/O操作中,发生了多次的数据拷贝。

    当应用程序访问某块数据时,操作系统首先会检查,是不是最近访问过此文件,文件内容是否缓存在内核缓冲区,如果是,操作系统则直接根据read系统调用提供的buf地址,将内核缓冲区的内容拷贝到buf所指定的用户空间缓冲区中去。如果不是,操作系统则首先将磁盘上的数据拷贝的内核缓冲区,这一步目前主要依靠DMA来传输,然后再把内核缓冲区上的内容拷贝到用户缓冲区中。
接下来,write系统调用再把用户缓冲区的内容拷贝到网络堆栈相关的内核缓冲区中,最后socket再把内核缓冲区的内容发送到网卡上。

 

从上图中可以看出,共产生了四次数据拷贝,即使使用了DMA来处理了与硬件的通讯,CPU仍然需要处理两次数据拷贝,与此同时,在用户态与内核态也发生了多次上下文切换,无疑也加重了CPU负担。 

在此过程中,我们没有对文件内容做任何修改,那么在内核空间和用户空间来回拷贝数据无疑就是一种浪费,而零拷贝主要就是为了解决这种低效性。

mmap

buf = mmap(diskfd, len);write(sockfd, buf, len);

应用程序调用mmap(),磁盘上的数据会通过DMA被拷贝的内核缓冲区,接着操作系统会把这段内核缓冲区与应用程序共享,这样就不需要把内核缓冲区的内容往用户空间拷贝。应用程序再调用write(),操作系统直接将内核缓冲区的内容拷贝到socket缓冲区中,这一切都发生在内核态,最后,socket缓冲区再把数据发到网卡去。


buf = mmap(diskfd, len);write(sockfd, buf, len);

应用程序调用mmap(),磁盘上的数据会通过DMA被拷贝的内核缓冲区,接着操作系统会把这段内核缓冲区与应用程序共享,这样就不需要把内核缓冲区的内容往用户空间拷贝。应用程序再调用write(),操作系统直接将内核缓冲区的内容拷贝到socket缓冲区中,这一切都发生在内核态,最后,socket缓冲区再把数据发到网卡去。
同样的,看图很简单:

sendfile

Linux中的sendfile()以及Java NIO中的FileChannel.transferTo()

#include<sys/sendfile.h>ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

系统调用sendfile()在代表输入文件的描述符in_fd和代表输出文件的描述符out_fd之间传送文件内容(字节)。描述符out_fd必须指向一个套接字,而in_fd指向的文件必须是可以mmap的。这些局限限制了sendfile的使用,使sendfile只能将数据从文件传递到套接字上,反之则不行。
使用sendfile不仅减少了数据拷贝的次数,还减少了上下文切换,数据传送始终只发生在kernel space

 

目前为止,我们已经减少了数据拷贝的次数了,但是仍然存在一次拷贝,就是页缓存到socket缓存的拷贝。那么能不能把这个拷贝也省略呢?

借助于硬件上的帮助,我们是可以办到的。之前我们是把页缓存的数据拷贝到socket缓存中,实际上,我们仅仅需要把缓冲区描述符传到socket缓冲区,再把数据长度传过去,这样DMA控制器直接将页缓存中的数据打包发送到网络中就可以了。

总结一下,sendfile系统调用利用DMA引擎将文件内容拷贝到内核缓冲区去,然后将带有文件位置和长度信息的缓冲区描述符添加socket缓冲区去,这一步不会将内核中的数据拷贝到socket缓冲区中,DMA引擎会将内核缓冲区的数据拷贝到协议引擎中去,避免了最后一次拷贝。 

 

IO多路复用

      IO多路复用(事件驱动模型),首先要理解的是,操作系统为你提供了一个功能,当你的某个socket可读或者可写的时候,它可以给你一个通知。这样当配合非阻塞的socket使用时,只有当系统通知哪个描述符可读了,才去执行read操作,可以保证每次read都能读到有效数据而不做纯返回-1和EAGAIN的无用功。写操作类似。操作系统的这个功能通过select/poll/epoll/kqueue之类的系统调用函数来使用,这些函数都可以同时监视多个描述符的读写就绪状况,这样,多个描述符的I/O操作都能在一个线程内并发交替地顺序完成,这就叫I/O多路复用,这里的“复用”指的是复用同一个线程。

IO多路复用是指内核一旦发现进程指定的一个或者多个IO条件准备读取,它就通知该进程。IO多路复用适用如下场合:

  (1)当客户处理多个描述字时(一般是交互式输入和网络套接口),必须使用I/O复用。

  (2)当一个客户同时处理多个套接口时,而这种情况是可能的,但很少出现。

  (3)如果一个TCP服务器既要处理监听套接口,又要处理已连接套接口,一般也要用到I/O复用。

  (4)如果一个服务器即要处理TCP,又要处理UDP,一般要使用I/O复用。

  (5)如果一个服务器要处理多个服务或多个协议,一般要使用I/O复用。

  与多进程和多线程技术相比,I/O多路复用技术的最大优势是系统开销小,系统不必创建进程/线程,也不必维护这些进程/线程,从而大大减小了系统的开销。

 

select接口:

    int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);

   其中n是我们要监控的描述符的最大值加1,fd_set 结构体,结构体里就是个long数组,对应着描述符,包括:可读、可写、异常。timeout是超时时间,如果设置的秒和毫秒数如果为0,则不阻塞。如果为null,则一直阻塞。返回的值就是有多少个描述符准备好了,并不会告诉,哪些准备好了。需要自己遍历查看。

  缺点:

    1:每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大。

    2:同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大。

    3:select支持的文件描述符数量太小了,默认是1024。

 poll接口:

  int poll (struct pollfd *fds, unsigned int nfds, int timeout);

  其中传递描述符的方式和select不同,使用的是pollfd结构体。

  struct pollfd

  {

        int fd;               /* 文件描述符 */

       short events;        /* 等待的事件 */ 

       short revents;       /* 实际发生了的事件 */

   } ;

 poll和select的基本一样,不过支持的描述符数量多了。


       epoll接口

  epoll和select、poll不一样,包含了三个系统调用

  int epoll_create(int size);

  int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

  int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

         epoll的实现,简单来说分为三个过程:               

             1. epoll初始化时,会向内核注册一个文件系统,用于存储被监控的句柄文件,调用epoll_create时,会在这个文件系统中创建一个file节点。同时epoll会开辟自己的内核高速缓存区,以红黑树的结构保存句柄,以支持  快速的查找、插入、删除。还会再建立一个list链表,用于存储准备就绪的事件。

             2. 当执行epoll_ctl时,除了把socket句柄放到epoll文件系统里file对象对应的红黑树上之外,还会给内核中断处理程序注册一个回调函数,告诉内核,如果这个句柄的中断到了,就把它放到准备就绪list链表里。所以,当一个socket上有数据到了,内核在把网卡上的数据copy到内核中后,就把socket插入到就绪链表里。

            3. 当epoll_wait调用时,仅仅观察就绪链表里有没有数据,如果有数据就返回,否则就sleep,超时时立刻返回。

 epoll有两种工作模式:

   1:边缘触发 Edge Triggered(ET)

   2:水平触发 Level Triggered(LT)

  区别:当监控的fd有新事件到来的时候,两种模式下都会返回,可是如果这次没有把这个事件对应的套接字缓冲区处理完,在这个套接字中没有新的事件再次到来时,在ET模式下是无法再次从epoll_wait调用中获取这个事件的。而LT模式正好相反,只要一个事件对应的套接字缓冲区还有数据,就总能从epoll_wait中获取这个事件。

优点:

   1:支持的fd数量远大于select,在1G内存的机器上,大概10万左右。

   2:随着监控的fd数量的增加,性能不会直线下降

   3:使用mmap加速内核与用户空间的消息传递

   4:不用每次调用都要把fd从用户空间弄到内核空间


参考:

           http://www.jianshu.com/p/0d497fe5484a

原创粉丝点击