seq2seq模型详解

来源:互联网 发布:运动内衣 知乎 编辑:程序博客网 时间:2024/06/04 23:36

在李纪为博士的毕业论文中提到,基于生成的闲聊机器人中,seq2seq是一种很常见的技术。例如,在法语-英语翻译中,预测的当前英语单词不仅取决于所有前面的已翻译的英语单词,还取决于原始的法语输入;另一个例子,对话中当前的response不仅取决于以往的response,还取决于消息的输入。其实,seq2seq最早被用于机器翻译,后来成功扩展到多种自然语言生成任务,如文本摘要和图像标题的生成。本文将介绍几种常见的seq2seq的模型原理,seq2seq的变形以及seq2seq用到的一些小trick。

我们使用x={x1,x2,…,xn}代表输入的语句,y={y1, y2, …, yn}代表输出的语句,yt代表当前输出词。在理解seq2seq的过程中,我们要牢记我们的目标是:


这里写图片描述(1)

即输出的yt不仅依赖之前的输出{y1, y2, …, yt−1},还依赖输入语句x,模型再怎么变化都是在公式(1)的约束之下。

seq2seq最初模型

最早由bengio等人发表在computer science上的论文:Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation。对于RNN来说,x={x1,x2,…,xt}代表输入,在每个时间步t,RNN的隐藏状态ht由公式(1)更新:

ht=f(ht1,xt) (2)

其中,f代表一个非线性函数。这时ht就是一个rnn_size的隐含状态。然后需要通过一个矩阵W将其转成一个symbol_size的输出,并通过softmax函数将其转化为概率,然后筛选出概率最大的symbol为输出symbol。

这里写图片描述(3)

以上是rnn的基本原理,接下来介绍论文中的seq2seq模型:

这里写图片描述

模型包括encoder和decoder两个部分。首先在encoder部分,将输入传到encoder部分,得到最后一个时间步长t的隐藏状态C,这就是RNNcell的基本功能。其次是decoder部分,从上述模型的箭头中可以看出,decoder的隐藏状态ht就由ht1yt1和C三部分构成。即:

这里写图片描述(4)

由此我们的到了decoder的隐藏状态,那么最后的输出yth_{t}y_{t-1}$和C,即:

这里写图片描述(5)

到现在为止,我们就实现了我们的目标(1)。

seq2seq的改进模型

改进模型介绍2014年发表的论文Sequence to Sequence Learning with Neural Networks。模型图:

这里写图片描述

可以看到,该模型和第一个模型主要的区别在于从输入到输出有一条完整的流:ABC为encoder的输入,WXYZ为decoder的输入。将encoder最后得到的隐藏层的状态ht输入到decoder的第一个cell里,就不用像第一个模型一样,而一个decoder的cell都需要ht,因此从整体上看,从输入到输出像是一条“线性的数据流”。本文的论文也提出来,ABC翻译为XYZ,将encoder的input变为“CBA”效果更好。即A和X的距离更近了,更有利于seq2seq模型的交流。

具体来说,encoder的过程如下图。这和我们之前的encoder都一样。

这里写图片描述

不同的是decoder的阶段:

这里写图片描述

得到了encoder represention,即encoder的最后一个时间步长的隐层ht以后,输入到decoder的第一个cell里,然后通过一个激活函数和softmax层,得到候选的symbols,筛选出概率最大的symbol,然后作为下一个时间步长的输入,传到cell中。这样,我们就得到了我们的目标(1)。

seq2seq with attention

我们前面提到,距离decoder的第一个cell越近的输入单词,对decoder的影响越大。但这并不符合常理,这时就提出了attention机制,对于输出的每一个cell,都检测输入的sequence里每个单词的重要性,即论文NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE。attention在NMT基于seq2seq的改进模型再进行改进,原理如下:

这里写图片描述

上图中,encoder和decoder都发生了变化。首先说encoder,使用了双向RNN,因为希望不仅能得到前向的词的顺序,还希望能够得到反向的词的顺序。使用hj代表hj前向的隐层状态,hj代表hj的反向隐层状态,hj的最终状态为将两者连接(concat)起来,即hj=[hj;hj]

再说decoder。我们再来回顾一下我们的目标公式(1):


这里写图片描述

对于加入attention机制的seq2seq,每一个输出为公式(6)。即对于时间步i的输出yi,由时间步i的隐藏状态si,由attention计算得到的输入内容ci和上一个输出yi-1得到。

这里写图片描述(6)

其中si是对于时间步i的隐藏状态,由公式(7)计算。即对于时间步i的隐藏状态,由时间步i-1的隐藏状态si-1,由attention计算得到的输入内容ci和上一个输出yi-1得到。

这里写图片描述(7)

通过以上公式可以看出,加入attention的seq2seq比之前的seq2seq多了一个输入内容向量ci,那么这个ci是怎么得来的呢?和输入内容以及attention有什么关系呢?我们接着看公式(8):

这里写图片描述(8)

即,对于decoder的时间步长i的隐藏状态si,ci等于Tx个输入向量[1,Tx]与其权重αij相乘求和。这个权重αij由公式(9)得到:

这里写图片描述(9)

其中,eij由公式(10)得到:

这里写图片描述(10)

总结一下,对于时间步i的隐藏状态si,可以通过求时间步i-1的隐藏状态si-1、输入内容的编码向量ci和上一个输出yi-1得到。输入内容编码ci是新加入的内容,可以通过计算输入句子中每个单词的权重,然后加权求和得到ci。直观解释这个权重:对于decoder的si和encoder的hj的权重\alpha_{ij}$,就是上一个时间步长的隐藏状态si-1与encoder的hj通过非线性函数得到的。这样就把输入内容加入到解码的过程中,这和我们人类翻译的过程也是类似的,即对于当前输出的词,每一个输入给与的注意力是不一样的。

seq2seq with beam-search

在测试阶段,decoder的过程有两种主要的解码方式。第一种方法是贪婪解码,它将在上一个时间步预测的单词feed给下一步的输入,来预测本个时间步长的最有可能的单词。

但是,如果有一个cell解码错了词,那么错误便会一直累加。所以在工程上提出了beam-search的方法。即在decoder阶段,某个cell解码时不只是选出预测概率最大的symbol,而是选出k个概率最大的词(例如k = 5,我们称k=5为beam-size)。在下一个时间步长,对于这5个概率最大的词,可能就会有5V个symbols(V代表词表的大小)。但是,只保留这5V个symbols中最好的5个,然后不断的沿时间步长走下去。这样可以保证得到的decode的整体的结果最优。

参考文献:

(1)Learning Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation

(2)Sequence to Sequence Learning with Neural Networks

(3)NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

(4)seq2seq with beam-search

(5) 从头实现一个深度学习对话系统–Seq-to-Seq模型详解

(6) seq2seq学习笔记

阅读全文
'); })();
0 0
原创粉丝点击
热门IT博客
热门问题 老师的惩罚 人脸识别 我在镇武司摸鱼那些年 重生之率土为王 我在大康的咸鱼生活 盘龙之生命进化 天生仙种 凡人之先天五行 春回大明朝 姑娘不必设防,我是瞎子 浮岛物语水晶洞窟 波杜希蒂岛浮潜 水生植物浮岛 浮岛物语火焰神庙 美食大战老鼠浮空岛 画皮3之浮唯之恋 浮寄孤悬 长安浮世录 旧木已深 浮板图片 浮板 雪弗板是什么 什么是雪弗板 雪弗板 浮标怎么绑 浮标 浮标目数 浮标钓鱼 孔雀羽浮标 浮标厂 黄金眼浮标 鱼网浮标 浮标黄金眼 浮标驱风油 浮标钥匙扣 浮标式氧气吸入器 浮标式液位计 浮标式氧气吸入器价格 钓鱼的浮标怎么绑 浮标液位计图片 鱼浮 浮漂的选择 浮漂 赣州古浮桥旅游 浮桥 赣州古浮桥 狮子关浮桥 浮桥图片 黄河浮桥 泉州浮桥花店 太仓浮桥二手房出售 泉州浮桥酒店