Lua中的面向对象实现探讨

来源:互联网 发布:软件研制总结 编辑:程序博客网 时间:2024/05/22 02:01

 

元表概念

 

Lua中,面向对向是用元表这种机制来实现的。元表是个很“道家”的机制,很深遂,很强大,里面有一些基本概念比较难理解透彻。不过,只有完全理解了元表,才能对Lua的面向对象使用自如,才能在写Lua代码的高级语法时游刃有余。

 

首先,一般来说,一个表和它的元表是不同的个体(不属于同一个表),在创建新的table时,不会自动创建元表。

但是,任何表都可以有元表(这种能力是存在的)。

 

e.g.

t = {}

print(getmetatable(t))   --> nil

t1 = {}

setmetatable(t, t1)

assert(getmetatable(t) == t1)

 

setmetatable( 表1, 表2) 将表2挂接为表1的元表,并且返回经过挂接后的表1。

 

元表中的__metatable字段,用于隐藏和保护元表。当一个表与一个赋值了__metatable的元表进行挂接时,用getmetatable操作这个表,就会返回__metatable这个字段的值,而不是元表!用setmetatable操作这个表(即给这个表赋予新的元表),那么就会引发一个错误。

 

table: 0x9197200

Not your business

lua: metatest.lua:12: cannot change a protected metatable

stack traceback:

    [C]: in function 'setmetatable'

    metatest.lua:12: in main chunk

    [C]: ?

 

__index方法

 

元表中的__index元方法,是一个非常强力的元方法,它为回溯查询(读取)提供了支持。而面向对象的实现基于回溯查找。

当访问一个table中不存在的字段时,得到的结果为nil。这是对的,但并非完全正确。实际上,如果这个表有元表的话,这种访问会促使Lua去查找元表中的__index元方法。如果没有这个元方法,那么访问结果就为nil。否则,就由这个元方法来提供最终的结果。

 

__index可以被赋值为一个函数,也可以是一个表。是函数的时候,就调用这个函数,传入参数(参数是什么后面再说),并返回若干值。是表的时候,就以相同的方式来重新访问这个表。(是表的时候,__index就相当于元字段了,概念上还是分清楚比较好,虽然在Lua里面一切都是值)

 

注意,这个时候,出现了三个表的个体了。这块很容易犯晕,我们来理一下。

我们直接操作的表,称为表A,表A的元表,称为表B,表B的__index字段被赋予的表,称为表C。整个过程是这样的,查找A中的一个字段,如果找不到的话,会去查看A有没有元表B,如果有的话,就查找B中的__index字段是否有赋值,这个赋值是不是表C,如果是的话,就再去C中查找有没有想访问的那个字段,如果找到了,就返回那个字段值,如果没找到,就返回nil。

 

对于没有元表的表,访问一个不存在的字段,就直接返回一个nil了。

 

__newindex是对应__index的方法,它的功能是“更新(写)”,两者是互补的。这里不细讲__newindex,但是过程很相似,灵活使用两个元方法会产生很多强大的效果。

 

从继承特性角度来讲,初步的效果使用__index就可以实现了。

 

面向对象的实现

 

Lua应该说,是一种原型语言。原型是一种常规的对象,当其他对象(类的实例)遇到一个未知的操作时,原型会去查找这个原型。在这种语言中要表示一个类,只需创建一个专用作其他对象的原型。实际上,类和原型都是一种组织对象间共享行为的方式。

 

Lua中实现原型很简单,在上面分析的的那个三个表中,C就是A的原型。

 

原理讲通后,来一点小技巧。其实,上面说的三个表嘛,不一定就是完全不同的。A和C可以是同一个。看下面的例子。

 

A = {}

setmetatable( A, { __index = A } )

 

这时,相当于A是A自身的原型了,自己是自己的原型,是个很有趣的字眼。就是说在查找的时候,在自己身上找不到就不会去其他地方找了。不过,自身是自身的原型本身并没有多大用的。如果A能做为一个类,然后生成的新对象以A做为原型,这才有用,后面谈。

 

再看,自身也可以是自身的元表的。即A可以是A的元表。

 

A = {}

setmetatable( A, A )

这时就可以这样写了,

A.__index = 表或函数

自己是自己的元表有用处的,如果A.__index是赋予的一个表,至少能在内存中少产生一个表;而如果A.__index是一个函数,那么就会产生很简洁强大的效果。(__index为其本身的一个字段了,不是很简洁吗)

 

然后,元表B与原型表C也可以是同一个。

A = {}

B = {}

B.__index = B

setmetatable( A, B )

这时,一个表的元表,就是这个表的原型,在面向对象的概念里,就是这个表的类。

 

我们甚至可以,这样来写:

 

A = {}

setmetatable( A, A )

A.__index = A

 

从语法原理上,是行得通的。但Lua解释器为了避免出现不必要的麻烦(循环定义),把这种情况给Kick掉了,如果这样写,会报错,并提示

 

loop in gettable

 

说真的,这样定义也确实没什么用处。

 

下面开始正式进入面向对象的实现。

 

先引用一下Sputnik中的实现片断,

 

local Sputnik = {}

local Sputnik_mt = {__metatable = {}, __index = Sputnik}

 

function new(config, logger)

 

   -- 这里生成obj对象之后,obj的原型就是Sputnik了,而后面会有很多的Sputnik的方法定义

   local obj = setmetatable({}, Sputnik_mt)

   -- 这里的方法就是“继承”的Sputnik的方法

   obj:init(config)

   返回这个对象的引用

   return obj

end

 

由上面可见,两个表定义加上一个方法,实现了类,及由类产生对象的方案。因为这是在模块中,故new前面没有表名称。这种方式实现有个好处,就是在外界调用此模块的时候,使用 

 

sputnik = require "sputnik"

然后,调用

s = sputnik.new()

就可以生成一个sputnik对象s了,这个对象会继承原型Sputnik(就是上面定义的那个表)的所有方法和属性。

 

但是,这种方法定义的,也有点问题,就是,类的继承实现上不方便。它只是在类的定义上,和生成对象的方式上比较方便,但是在类之间的继承上不方便。

 

下面,用另一种方式实现。

 

A = {

    x = 10,

    y = 20

}

 

function A:new( t )

    local t = t or {}

    self.__index = self

    setmetatable( t, self )

    return t

end

 

从A中产生一个对象AA

 

AA = A:new()

 

此时,AA就是一个新表了,它是一个对象,但也是一个类。它还可以继续如下操作:

 

s = AA:new()

 

AA中本来是没有new这个方法的,但它被赋予了一个元表(同时也是原型),这个时候是A,A中有new方法和x,y两个字段。

 

AA通过__index回溯到A找到了new方法,并且执行new的代码,同时还会传入self参数。这就是奇妙所在,此时候传入的self参数引用的是AA这个表,而不再是第一次调用时A这个表了。因此 AA:new() 执行后,同样,是生成了一个新的对象s,同时这个对象以AA为原型,并且继承AA的所有内容。至此,我们不是已经实现了类的继承了吗?AA现在是A的子类,s是AA的一个对象实例。后面还可以以此类推,建立长长的继承链。

 

由上也可见,类与原型概念上还是有区别的,Lua是一种原型语言,这点体现的得很明显,类在这种语言中,就是原型,而原型仅仅是一个常规对象。

 

下面,如果在A中定义了函数:

function A:acc( v )

    self.x = self.x + v

end

 

function A:dec( v )

    if v > self.x then error "not more than zero" end

    self.x = self.x - v

end

 

然后,现在调用

s:acc(5)

 

那么,是这样调用的,先是查找s中有无acc这个方法,没有找到,然后去找AA中有无acc这个方法,还是没找到,就去A中找有无此方法,找到了。找到后,将指向s的self参数和5这个参数传进acc函数中,并执行acc的代码,执行里面代码的时候,这一句:

self.x = self.x + v

在表达式右端,self.x是一个空值,因为self现在指向的是s,因此,根据__index往回回溯,一直找到A中有一个x,然后引用这个x值,10,因此,上面表达式就变成

self.x = 10 + 5

右边计算得15,赋值给左边,但这时self.x没有定义,但是s(及s的元表)中也没有定义__newindex元方法,于是,就在self(此时为s)所指向的表里面新建一个x字段,然后将15赋值给这个字段。

 

经过这个操作之后,实例s中,就有一个字段(成员变量)x了,它的值为15。

下次,如果再调用

s:dec(10)

的话,就会做类似的回溯操作,不过这次只做方法的回溯,而不做成员变量x的回溯,因为此时s中已经有x这个成员变量了,执行了这个函数后,s.x会等于5。

 

综上,这就是整个类继承,及对象实例方法引用的过程了。不过,话还没说完。

 

AA作为A的子类,本身是可以有一些作为的,因为AA之下的类及对象在查找时,都会先通过它这一关,才会到它的父亲A那里去,因此,它这里可以重载A的方法,比如,它可以定义如下函数:

 

function AA:acc(v)

    ...

end

 

function AA:dec(v)

    ...

end

 

函数里面可以写入一些新的不一样的内容,以应对现实世界中复杂的差异性。这个特性用面向对象的话来说,就是子类可以覆盖父类的方法及成员变量(字段),也就是重载。这个特性是必须的。

 

AA中还可以定义一些A中没有的方法和字段,操作是一样的,这里提一下。

 

Lua中的对象还有一个很灵活强大的特性,就是无须为指定一种新行为而创建一个新类。如果只有一个对象需要某种特殊的行为,那么可以直接在该对象中实现这个行为。也就是说,在对象被创建后,对象的方法和字段还可以被增加,重载,以应对实际多变的情况。而毋须去劳驾类定义的修改。这也是类是普通对象的好处。更加灵活。

 

可以看出,A:new()这个函数是一个很关键的函数,在类的继承中起了关键性因素。不过为了适应在模块中使用的情况(很多),在function A:new(t)之外还定义一个 

function new(t)

    A:new(t)

end

将生成函数封装起来,然后,只需使用 模块名.new() 就可以在模块外面生成一个A的实例对象了。

 

差不多了吧,可以看到,这种类实现的机制是多么自洽,简洁,灵活,强大!不过要折磨下你的大脑了。

 

From:http://blog.csdn.net/xenyinzen/archive/2008/12/17/3536708.aspx

 

原创粉丝点击