const使用详解

来源:互联网 发布:淘宝哪家mk代购是正品 编辑:程序博客网 时间:2024/05/16 18:10

const使用详解
作者:康建东   

关于C++中的const关键字的用法非常灵活,而使用const将大大改善程序的健壮性,现将本人的一些体会总结如下,期望对大家有所帮助:   

 一 const基础   

如果const关键字不涉及到指针,我们很好理解,下面是涉及到指针的情况:    

int b = 500;   
const int* a = &b;    [1]
int const *a = &b;   [2]
int* const a = &b;   [3]
const int* const a = &b; [4]  

如果你能区分出上述四种情况,那么,恭喜你,你已经迈出了可喜的一步。不知道,也没关系,我们可以参考《Effective c++》Item21上的做法,如果const位于星号的左侧,则const就是用来修饰指针所指向的变量,即指针指向为常量;如果const位于星号的右侧,const就是修饰指针本身,即指针本身是常量。因此,[1]和[2]的情况相同,都是指针所指向的内容为常量(const放在变量声明符的位置无关),这种情况下不允许对内容进行更改操作,如不能*a = 3 ;[3]为指针本身是常量,而指针所指向的内容不是常量,这种情况下不能对指针本身进行更改操作,如a++是错误的;[4]为指针本身和指向的内容均为常量。   
另外const 的一些强大的功能在于它在函数声明中的应用。在一个函数声明中,const 可以修饰函数的返回值,或某个参数;对于成员函数,还可以修饰是整个函数。有如下几种情况,以下会逐渐的说明用法:A& operator=(const A& a);   
void fun0(const A* a );  
void fun1( ) const;    // fun1( ) 为类成员函数 
const A fun2( ); 

 二 const的初始化 

先看一下const变量初始化的情况 
1) 非指针const常量初始化的情况:A b; 
const A a = b; 

2) 指针(引用)const常量初始化的情况:A* d = new A(); 
 const A* c = d;
或者:const A* c = new A(); 
引用: 
 A f;
 const A& e = f;   // 这样作e只能访问声明为const的函数,而不能访问一般的成员函数;

[思考1]: 以下的这种赋值方法正确吗?
const A* c=new A();
A* e = c;
[思考2]: 以下的这种赋值方法正确吗?
A* const c = new A();
A* b = c;

 三 作为参数和返回值的const修饰符

其实,不论是参数还是返回值,道理都是一样的,参数传入时候和函数返回的时候,初始化const变量
1 修饰参数的const,如 void fun0(const A* a ); void fun1(const A& a);
调用函数的时候,用相应的变量初始化const常量,则在函数体中,按照const所修饰的部分进行常量化,如形参为const A* a,则不能对传递进来的指针的内容进行改变,保护了原指针所指向的内容;如形参为const A& a,则不能对传递进来的引用对象进行改变,保护了原对象的属性。
[注意]:参数const通常用于参数为指针或引用的情况;
2 修饰返回值的const,如const A fun2( ); const A* fun3( );
这样声明了返回值后,const按照"修饰原则"进行修饰,起到相应的保护作用。const Rational operator*(const Rational& lhs, const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());
}

返回值用const修饰可以防止允许这样的操作发生:Rational a,b;
Radional c;
(a*b) = c;

一般用const修饰返回值为对象本身(非引用和指针)的情况多用于二目操作符重载函数并产生新对象的时候。
[总结] 一般情况下,函数的返回值为某个对象时,如果将其声明为const时,多用于操作符的重载。通常,不建议用const修饰函数的返回值类型为某个对象或对某个对象引用的情况。
原因如下:
如果返回值为某个对象为const(const A test = A 实例)或某个对象的引用为const(const A& test = A实例) ,则返回值具有const属性,则返回实例只能访问类A中的公有(保护)数据成员和const成员函数,并且不允许对其进行赋值操作,这在一般情况下很少用到。

[思考3]: 这样定义赋值操作符重载函数可以吗?
const A& operator=(const A& a);

 四 类成员函数中const的使用

一般放在函数体后,形如:void fun() const;
如果一个成员函数的不会修改数据成员,那么最好将其声明为const,因为const成员函数中不允许对数据成员进行修改,如果修改,编译器将报错,这大大提高了程序的健壮性。
 五 使用const的一些建议

1 要大胆的使用const,这将给你带来无尽的益处,但前提是你必须搞清楚原委;
2 要避免最一般的赋值操作错误,如将const变量赋值,具体可见思考题;
3 在参数中使用const应该使用引用或指针,而不是一般的对象实例,原因同上;
4 const在成员函数中的三种用法(参数、返回值、函数)要很好的使用;
5 不要轻易的将函数的返回值类型定为const;
6除了重载操作符外一般不要将返回值类型定为对某个对象的const引用;


本人水平有限,欢迎批评指正,可以联系 kangjd@epri.ac.cn


[思考题答案]
1 这种方法不正确,因为声明指针的目的是为了对其指向的内容进行改变,而声明的指针e指向的是一个常量,所以不正确;
2 这种方法正确,因为声明指针所指向的内容可变;
3 这种做法不正确;
在const A::operator=(const A& a)中,参数列表中的const的用法正确,而当这样连续赋值的时侯,问题就出现了:
A a,b,c:
(a=b)=c;
因为a.operator=(b)的返回值是对a的const引用,不能再将c赋值给const常量。
//////////////////////////////////
static const *P const = &晕

来到这已经一个多月了,慢慢的(相对来说,因为在工作中学的比自己看书学的快多了)也学会了一些东西啦.CString,vector,list,map还有迭代器,就是没发现在C++有取整函数.
最重要的是我发现我竟然能把日语的平甲名,片甲名全背下来,达到随机转换的程度.呵呵.有点觉得我是我自己真幸运.
这些好的感觉一直扯着我的嘴角,直到有一天我碰到了CONST,大大的小写CONST.紧接着我就昏过去了.
小心雷区:
const int *P;                             //指向静态变量的指针
int const *p;                                               //同上
int *p const;                                                    //一个静态指针
const int *p const;                        //指向静态变量的静态指针
 
const int* GetData(int);                     //返回一个指向静态变量的指针
int* const GetData(int);                     //返回一个静态指针
int* SetData(const int);                         //不改变参数的值      
int* GetData() const { return data;}                     //此函数不改变成员变量的值.
注意:
class Text
{
private:
    CBook* m_pBook;
    TreeAdapter m_Adapter;
public:
    //这行里可以不在CBook前加const,因为返回的是一个指针,外界不能改变指针本身的值,
    //而外界改变指针所指地址的值则不是类的成员,不在限制内.
    CBook* GetBookPtr() const { return m_pBook;}
    //这行里如加上第二个const则第一个const必须加上,因为此函数传出的是成员的地址,
    //而外界可以通过这个地址改变成员的值,所以必须用第一个const限制这个地址上存的值不能改变.
    const TreeAdtaper GetAdapterPtr() const { return &m_Adaper;}
};

 

 


1,malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
2,对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
3,因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
4,C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存

new 是个操作符,和什么"+","-","="...有一样的地位.
 
malloc是个分配内存的函数,供你调用的.
 
new是保留字,不需要头文件支持.
malloc需要头文件库函数支持.

new 建立的是一个对象,
malloc分配的是一块内存.
 
new建立的对象你可以把它当成一个普通的对象,用成员函数访问,不要直接访问它的地址空间
malloc分配的是一块内存区域,就用指针访问好了,而且还可以在里面移动指针.
/////////////////////////////////////////////////////////////////////////////////////
三个函数的申明分别是:
void* realloc(void* ptr, unsigned newsize);
void* malloc(unsigned size);
void* calloc(size_t nelem, size_t elsize);
都在stdlib.h函数库内

它们的返回值都是请求系统分配的地址,如果请求失败就返回NULL

malloc与calloc的区别

用malloc()函数更好还是用calloc()函数更好


函数malloc()和calloc()都可以用来动态分配内存空间,但两者稍有区别。

malloc()函数有一个参数,即要分配的内存空间的大小:

void*malloc(size_tsize);

calloc()函数有两个参数,分别为元素的数目和每个元素的大小,这两个参数的乘积就是要分配的内存空间的大小。

void*calloc(size_tnumElements,size_tsizeOfElement);

如果调用成功,函数malloc()和函数calloc()都将返回所分配的内存空间的首地址。

函数malloc()和函数calloc() 的主要区别是前者不能初始化所分配的内存空间,而后者能。如果由malloc()函数分配的内存空间原来没有被使用过,则其中的每一位可能都是0;反之, 如果这部分内存曾经被分配过,则其中可能遗留有各种各样的数据。也就是说,使用malloc()函数的程序开始时(内存空间还没有被重新分配)能正常进 行,但经过一段时间(内存空间还已经被重新分配)可能会出现问题。

函数calloc() 会将所分配的内存空间中的每一位都初始化为零,也就是说,如果你是为字符类型或整数类型的元素分配内存,那麽这些元素将保证会被初始化为0;如果你是为指 针类型的元素分配内存,那麽这些元素通常会被初始化为空指针;如果你为实型数据分配内存,则这些元素会被初始化为浮点型的零。

malloc用于申请一段新的地址,参数size为需要内存空间的长度,如:
char* p;
p=(char*)malloc(20);

calloc与malloc相似,参数nelem为申请地址的单位元素长度,elsize为元素个数,如:
char* p;
p=(char*)calloc(sizeof(char),20);
这个例子与上一个效果相同

realloc是给一个已经分配了地址的指针重新分配空间,参数ptr为原有的空间地址,newsize是重新申请的地址长度
如:
char* p;
p=(char*)malloc(sizeof(char)*20);
p=(char*)realloc(p,sizeof(char)*40);

注意,这里的空间长度都是以字节为单位。

C语言的标准内存分配函数:malloc,calloc,realloc,free等。
malloc与calloc的区别为1块与n块的区别:
malloc调用形式为(类型*)malloc(size):在内存的动态存储区中分配一块长度为“size”字节的连续区域,返回该区域的首地址。
calloc调用形式为(类型*)calloc(n,size):在内存的动态存储区中分配n块长度为“size”字节的连续区域,返回首地址。
realloc调用形式为(类型*)realloc(*ptr,size):将ptr内存大小增大到size。
free的调用形式为free(void*ptr):释放ptr所指向的一块内存空间。
C++中为new/delete函数。

malloc的功能是确保内存空间使用字节。比如限定100,函数使用方法:
  (char *)malloc(100)  
超过100就会出错。

程序例:
#include <stdlib.h>
#include <stdio.h>
//#include <malloc.h>

void main( void )
{
 char *str;
 str = (char *)malloc(100);
 if( str == NULL )
  printf( "不能确保内存领域。/n" );
 else
  printf( "可以确保100字节内存。/n" );
 
 free( str ); 
 printf( "解放内存。/n" );
 getchar();
}
------------------------------------------------------------------
calloc则限定了每个要素的内存使用字节量
例:(char *)calloc(4,100);
程序例:

#include <stdlib.h>
#include <stdio.h>
//#include <malloc.h>

void main( void )
{
 char *str;
 str = (char *)calloc(4,100);
 if( str == NULL )
  printf( "不能确保内存领域。/n" );
 else
  printf( "可以确保4x100字节内存。/n" );
 free( str );
 printf( "解放内存。/n" );
 getchar();
}

首先看个问题程序(这里用的是TC编译器):
#include "stdlib.h"
#include "stdio.h"
void main()
{
   int *i;
   i=(int *)malloc(sizeof(int));
   *i=1;
   *(i+1)=2;
   printf("%x|%d/n",i,*i);
   printf("%x|%d",i+1,*(i+1));
}
输出的结果是:
8fc|1
8fe|2
这个程序编译通过,运行正常,说它有问题,问题出在哪呢?

首先通过malloc,建了一个大小为2的堆,
i指向的地址是8fc,i+1指向的地址是8fc+sizeof(int)=8fe
但是地址8fe是不受保护的,因为它不是机器分配给i+1的,随时会被其他变量占用。

正确的做法是
#include "stdlib.h"
#include "stdio.h"
void main()
{
   int *i;
   i=(int *)malloc(sizeof(int));
   *i=1;
   i=(int *)realloc(i,2*sizeof(int));
   *(i+1)=2;
   printf("%x|%d/n",i,*i);
   printf("%x|%d",i+1,*(i+1));
}
realloc 可以对给定的指针所指的空间进行扩大或者缩小,无论是扩张或是缩小,原有内存的中内容将保持不变。当然,对于缩小,则被缩小的那一部分的内容会丢失。realloc 并不保证调整后的内存空间和原来的内存空间保持同一内存地址。相反,realloc 返回的指针很可能指向一个新的地址。
所以,在代码中,我们必须将realloc返回的值,重新赋值给 p :
p = (int *) realloc (p, sizeof(int) *15);

甚至,你可以传一个空指针(0)给 realloc ,则此时realloc 作用完全相当于malloc。
int* p = (int *) realloc (0,sizeof(int) * 10);  //分配一个全新的内存空间,

这一行,作用完全等同于:
int* p = (int *) malloc(sizeof(int) * 10);

『附注:TC编译器里sizeof(int)=2,VC里面sizeof(int)=4;
char型在两个编译器里是一样的,都是1个字节(8位)』

calloc与malloc相似,参数nelem为申请地址的单位元素长度,elsize为元素个数,如:
char* p;
p=(char*)calloc(sizeof(char),20);
这个例子与上一个效果相同

 

 PostMessage 和SendMessage的区别主要在于是否等待其他程序消息处理。PostMessage只是把消息放入队列,不管其他程序是否处理都返回,然后继续执行;而SendMessage必须等待其他程序处理消息后才返回,继续执行。这两个函数的返回值也不同,PostMessage的返回值表示PostMessage函数执行是否正确,而SendMessage的返回值表示其他程序处理消息后的返回值。

 

 

__stdcall的问题


所以请高手指点一下,平常编程用得到__stdcall吗? 究竟什么时候必须要用__stdcall? 为什么? 能否给出简单的例子?

这是调用约定:
从右向左将参数压入堆栈,
函数被调用前,所有参数压入栈内,并由被调用函数释放堆栈

如果你只使用C++一门语言进行编程,则不用使用__stdcall,但是如果多种语言混合使用,则有必要考虑一下不同的调用约定之间的兼容性。

 (一)调用约定
     VC++5.0支持的函数调用约定有多种,在这里仅讨论以下三种:__stdcall调用约定
、C调用约定
和__fastcall调用约定。
    __stdcall调用约定相当于16位动态库中经常使用的PASCAL调用约定。在32位的VC+
+5.0中PASCAL调用
约定不再被支持(实际上它已被定义为__stdcall。除了__pascal外,__fortran和__sy
scall也不被支持),
取而代之的是__stdcall调用约定。两者实质上是一致的,即函数的参数自右向左通过栈
传递,被调用的函
数在返回前清理传送参数的内存栈,但不同的是函数名的修饰部分(关于函数名的修饰
部分在后面将详细
说明)。
    C调用约定(即用__cdecl关键字说明)和__stdcall调用约定有所不同,虽然参数传
送方面是一样的,
但对于传送参数的内存栈却是由调用者来维护的(也正因为如此,实现可变参数的函数
只能使用该调用约
定),另外,在函数名修饰约定方面也有所不同。
    __fastcall调用约定是“人”如其名,它的主要特点就是快,因为它是通过寄存器
来传送参数的(实
际上,它用ECX和EDX传送前两个双字或更小的参数,剩下的参数仍旧自右向左压栈传送
,被调用的函数在
返回前清理传送参数的内存栈),在函数名修饰约定方面,它和前两者均不同。
    关键字 __stdcall、__cdecl和__fastcall可以直接加在要输出的函数前,也可以在
编译环境
的Setting.../C/C++ /Code Generation项选择。当加在输出函数前的关键字与编译环境
中的选择不同时,
直接加在输出函数前的关键字有效。它们对应的命令行参数分别为/Gz、/Gd和/Gr。缺省
状态为/Gd,即
__cdecl。
    顺便说明一下,要完全模仿PASCAL调用约定首先必须使用__stdcall调用约定,至于
函数名修饰约定,
可以通过其它方法模仿。还有一个值得一提的是WINAPI宏,Windows.h支持该宏,它可以
将输出函数翻译成
适当的调用约定,在WIN32中,它被定义为__stdcall。
    建议:使用WINAPI宏,这样你就可以创建自己的APIs了。

 

 

C++箴言:理解typename的两个含义
作者:未知    来源:网络    日期:2006-4-2
  问题:在下面的 template declarations(模板声明)中 class 和 typename 有什么不同?

template<class T> class Widget; // uses "class"
template<typename T> class Widget; // uses "typename"

  答案:没什么不同。在声明一个 template type parameter(模板类型参数)的时候,class 和 typename 意味着完全相同的东西。一些程序员更喜欢在所有的时间都用 class,因为它更容易输入。其他人(包括我本人)更喜欢 typename,因为它暗示着这个参数不必要是一个 class type(类类型)。少数开发者在任何类型都被允许的时候使用 typename,而把 class 保留给仅接受 user-defined types(用户定义类型)的场合。但是从 C++ 的观点看,class 和 typename 在声明一个 template parameter(模板参数)时意味着完全相同的东西。

  然而,C++ 并不总是把 class 和 typename 视为等同的东西。有时你必须使用 typename。为了理解这一点,我们不得不讨论你会在一个 template(模板)中涉及到的两种名字。

  假设我们有一个函数的模板,它能取得一个 STL-compatible container(STL 兼容容器)中持有的能赋值给 ints 的对象。进一步假设这个函数只是简单地打印它的第二个元素的值。它是一个用糊涂的方法实现的糊涂的函数,而且就像我下面写的,它甚至不能编译,但是请将这些事先放在一边――有一种方法能发现我的愚蠢:

template<typename C> // print 2nd element in
void print2nd(const C& container) // container;
{
 // this is not valid C++!
 if (container.size() >= 2) {
  C::const_iterator iter(container.begin()); // get iterator to 1st element
  ++iter; // move iter to 2nd element
  int value = *iter; // copy that element to an int
  std::cout << value; // print the int
 }
}

  我突出了这个函数中的两个 local variables(局部变量),iter 和 value。iter 的类型是 C::const_iterator,一个依赖于 template parameter(模板参数)C 的类型。一个 template(模板)中的依赖于一个 template parameter(模板参数)的名字被称为 dependent names(依赖名字)。当一个 dependent names(依赖名字)嵌套在一个 class(类)的内部时,我称它为 nested dependent name(嵌套依赖名字)。C::const_iterator 是一个 nested dependent name(嵌套依赖名字)。实际上,它是一个 nested dependent type name(嵌套依赖类型名),也就是说,一个涉及到一个 type(类型)的 nested dependent name(嵌套依赖名字)。

  print2nd 中的另一个 local variable(局部变量)value 具有 int 类型。int 是一个不依赖于任何 template parameter(模板参数)的名字。这样的名字以 non-dependent names(非依赖名字)闻名。(我想不通为什么他们不称它为 independent names(无依赖名字)。如果,像我一样,你发现术语 "non-dependent" 是一个令人厌恶的东西,你就和我产生了共鸣,但是 "non-dependent" 就是这类名字的术语,所以,像我一样,转转眼睛放弃你的自我主张。)

  nested dependent name(嵌套依赖名字)会导致解析困难。例如,假设我们更加愚蠢地以这种方法开始 print2nd:

template<typename C>
void print2nd(const C& container)
{
 C::const_iterator * x;
 ...
}

  这看上去好像是我们将 x 声明为一个指向 C::const_iterator 的 local variable(局部变量)。但是它看上去如此仅仅是因为我们知道 C::const_iterator 是一个 type(类型)。但是如果 C::const_iterator 不是一个 type(类型)呢?如果 C 有一个 static data member(静态数据成员)碰巧就叫做 const_iterator 呢?再如果 x 碰巧是一个 global variable(全局变量)的名字呢?在这种情况下,上面的代码就不是声明一个 local variable(局部变量),而是成为 C::const_iterator 乘以 x!当然,这听起来有些愚蠢,但它是可能的,而编写 C++ 解析器的人必须考虑所有可能的输入,甚至是愚蠢的。

  直到 C 成为已知之前,没有任何办法知道 C::const_iterator 到底是不是一个 type(类型),而当 template(模板)print2nd 被解析的时候,C 还不是已知的。C++ 有一条规则解决这个歧义:如果解析器在一个 template(模板)中遇到一个 nested dependent name(嵌套依赖名字),它假定那个名字不是一个 type(类型),除非你用其它方式告诉它。缺省情况下,nested dependent name(嵌套依赖名字)不是 types(类型)。(对于这条规则有一个例外,我待会儿告诉你。)

  记住这个,再看看 print2nd 的开头:

template<typename C>
void print2nd(const C& container)
{
 if (container.size() >= 2) {
  C::const_iterator iter(container.begin()); // this name is assumed to
  ... // not be a type

  这为什么不是合法的 C++ 现在应该很清楚了。iter 的 declaration(声明)仅仅在 C::const_iterator 是一个 type(类型)时才有意义,但是我们没有告诉 C++ 它是,而 C++ 就假定它不是。要想转变这个形势,我们必须告诉 C++ C::const_iterator 是一个 type(类型)。我们将 typename 放在紧挨着它的前面来做到这一点:

template<typename C> // this is valid C++
void print2nd(const C& container)
{
if (container.size() >= 2) {
typename C::const_iterator iter(container.begin());
...
}
}

  通用的规则很简单:在你涉及到一个在 template(模板)中的 nested dependent type name(嵌套依赖类型名)的任何时候,你必须把单词 typename 放在紧挨着它的前面。(重申一下,我待会儿要描述一个例外。)

  typename 应该仅仅被用于标识 nested dependent type name(嵌套依赖类型名);其它名字不应该用它。例如,这是一个取得一个 container(容器)和这个 container(容器)中的一个 iterator(迭代器)的 function template(函数模板):

template<typename C> // typename allowed (as is "class")
void f(const C& container, // typename not allowed
typename C::iterator iter); // typename required

  C 不是一个 nested dependent type name(嵌套依赖类型名)(它不是嵌套在依赖于一个 template parameter(模板参数)的什么东西内部的),所以在声明 container 时它不必被 typename 前置,但是 C::iterator 是一个 nested dependent type name(嵌套依赖类型名),所以它必需被 typename 前置。

  "typename must precede nested dependent type names"(“typename 必须前置于嵌套依赖类型名”)规则的例外是 typename 不必前置于在一个 list of base classes(基类列表)中的或者在一个 member initialization list(成员初始化列表)中作为一个 base classes identifier(基类标识符)的 nested dependent type name(嵌套依赖类型名)。例如:

template<typename T>
class Derived: public Base<T>::Nested {
 // base class list: typename not
 public: // allowed
  explicit Derived(int x)
  : Base<T>::Nested(x) // base class identifier in mem
  {
   // init. list: typename not allowed
 
   typename Base<T>::Nested temp; // use of nested dependent type
   ... // name not in a base class list or
  } // as a base class identifier in a
  ... // mem. init. list: typename required
};

  这样的矛盾很令人讨厌,但是一旦你在经历中获得一点经验,你几乎不会在意它。

  让我们来看最后一个 typename 的例子,因为它在你看到的真实代码中具有代表性。假设我们在写一个取得一个 iterator(迭代器)的 function template(函数模板),而且我们要做一个 iterator(迭代器)指向的 object(对象)的局部拷贝 temp,我们可以这样做:

template<typename IterT>
void workWithIterator(IterT iter)
{
 typename std::iterator_traits<IterT>::value_type temp(*iter);
 ...
}

  不要让 std::iterator_traits<IterT>::value_type 吓倒你。那仅仅是一个 standard traits class(标准特性类)的使用,用 C++ 的说法就是 "the type of thing pointed to by objects of type IterT"(“被类型为 IterT 的对象所指向的东西的类型”)。这个语句声明了一个与 IterT objects 所指向的东西类型相同的 local variable(局部变量)(temp),而且用 iter 所指向的 object(对象)对 temp 进行了初始化。如果 IterT 是 vector<int>::iterator,temp 就是 int 类型。如果 IterT 是 list<string>::iterator,temp 就是 string 类型。因为 std::iterator_traits<IterT>::value_type 是一个 nested dependent type name(嵌套依赖类型名)(value_type 嵌套在 iterator_traits<IterT> 内部,而且 IterT 是一个 template parameter(模板参数)),我们必须让它被 typename 前置。

  如果你觉得读 std::iterator_traits<IterT>::value_type 令人讨厌,就想象那个与它相同的东西来代表它。如果你像大多数程序员,对多次输入它感到恐惧,那么你就需要创建一个 typedef。对于像 value_type 这样的 traits member names(特性成员名),一个通用的惯例是 typedef name 与 traits member name 相同,所以这样的一个 local typedef 通常定义成这样:

template<typename IterT>
void workWithIterator(IterT iter)
{
 typedef typename std::iterator_traits<IterT>::value_type value_type;

 value_type temp(*iter);
 ...
}

  很多程序员最初发现 "typedef typename" 并列不太和谐,但它是涉及 nested dependent type names(嵌套依赖类型名)规则的一个合理的附带结果。你会相当快地习惯它。你毕竟有着强大的动机。你输入 typename std::iterator_traits<IterT>::value_type 需要多少时间?

  作为结束语,我应该提及编译器与编译器之间对围绕 typename 的规则的执行情况的不同。一些编译器接受必需 typename 时它却缺失的代码;一些编译器接受不许 typename 时它却存在的代码;还有少数的(通常是老旧的)会拒绝 typename 出现在它必需出现的地方。这就意味着 typename 和 nested dependent type names(嵌套依赖类型名)的交互作用会导致一些轻微的可移植性问题。

  Things to Remember

  ?在声明 template parameters(模板参数)时,class 和 typename 是可互换的。

  ?用 typename 去标识 nested dependent type names(嵌套依赖类型名),在 base class lists(基类列表)中或在一个 member initialization list(成员初始化列表)中作为一个 base class identifier(基类标识符)时除外。

 

原创粉丝点击