深入浅出linux内核源代码之双向链表list_head(上)

来源:互联网 发布:2016淘宝网购数据分析 编辑:程序博客网 时间:2024/05/16 10:50


       原创文章,转载请注明出处,谢谢!       
       作者:清林,博客名:飞空静渡

 

前言:linux源代码中有个头文件为list.h。很多linux下的源代码都会使用这个头文件,它里面定义了一个结构,以及定义了和其相关的一组函数,这个结构是这样的:

 

structlist_head{

structlist_head *next, *prev;

};

 

那么这个头文件又是有什么样的作用呢,这篇文章就是用来解释它的作用,虽然这是linux下的源代码,但对于学习C语言的人来说,这是算法和平台没有什么关系。

 

一、双向链表

学习计算机的人都会开一门课程《数据结构》,里面都会有讲解双向链表的内容。

什么是双向链表,它看起来是这样的:

 

structdlist

{

intno;

void*data;

structdlist *prev, *next;

};

 

它的图形结构图如下:

 

 

如果是双向循环链表,那么就加上虚线所示。

 

现在有几个结构体,它们是:

表示人的:

structperson

{

intage;

int weight;

};

表示动物的:

structanimal

{

intage;

int weight;

};

 

如果有一组filename变量和filedata变量,把它们存起来,我们会怎么做,当然就用数组了,但我们想使用双向链表,让它们链接起来,那该怎么做,唯一可以做的就是给每个结构加如两个成员,如下:

 

表示人的:

structperson

{

intage;

int weight;

structperson *next, *prev;

};

表示动物的:

structanimal

{

intage;

int weight;

structanimal *next, *prev;

};

 

现在有一个人的一个链表的链头指针person_head(循环双向链表)和动物的链表的链头指针ainimal_head,我们要获得特定年龄和特定体重的人或动物(假设不考虑重叠),那么代码看起来可能是这样:

structperson * get_percent(int age, int weight)

{

....

structperson *p;

for(p= person_head->next; p != person_head; p=p->next)

{

if(p->age== age && p->weight == weight)

returnp;

}

...

}

 

那同理,要获得一个特定年龄和重量的动物的函数get_animal(intage, int weight)的代码也是和上面的类似。

如果我们定义这样的两个函数,它们基本一样,会不会觉得有点冗余,如果是c++就好了,但这里只说c

 

如果我们仔细观察一下这两个结构,我们会发现它们出了类型名字不一样外,其它的都一样。那么我们考虑用一个宏来实现,这个宏看起来可能是这样的。

 

#defineget_one(list, age, weight, type, one) /

do /

{/

type*p;/

for(p= ((type*)list)->next; p != (type*)list; p=p->next)/

if(p->age == age && p->weight == weight)/

{/

one= p;/

break;/

}/

}while(0)

 

那么我们获得一个年龄50,体重60的人可以这样:

structperson *one = NULL;

get_one(person_head,50, 60, struct person, one);

if(one)

{

//get it

...

}

 

同样获得一个年龄20,体重130的动物可以这样:

structanimal *one = NULL;

get_one(animal_head,50, 60, struct animal, one);

if(one)

{

//get it

...

}

 

我们再回过头来看这两个结构,它们的指向前和指向后的指针其实都差不多,那把它们综合起来吧,所以看起来如下面:

 

structlist_head{

structlist_head *next, *prev;

};

 

表示人的:

structperson

{

intage;

int weight;

structlist_head list;

};

表示动物的:

structanimal

{

intage;

int weight;

structlist_head list;

};

 

现在这个两个结构看起来就更差不多一样了。现在为了方便,我们去掉那些暂时不用的数据,如下:

structperson

{

structlist_head list;

};

表示动物的:

structanimal

{

structlist_head list;

};

 

可能又会有些人会问了,structlist_head都不是structpersionstructanimal类型,怎么可以做链表的指针呢?其实,无论是什么样的指针,它的大小都是一样的,32位的系统中,指针的大小都是32位(即4个字节),只是不同类型的指针在解释的时候不一样而已,那么这个structlist_head又是怎么去做这些结构的链表指针呢,那么就请看下一节吧:)。

 

二、structlist_head结构的操作

首先,让我们来看下和structlist_head有关的两个宏,它们定义在list.h文件中。

 

#defineLIST_HEAD_INIT(name) { &(name), &(name) }

#defineLIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name)

#defineINIT_LIST_HEAD(ptr) do { /

(ptr)->next= (ptr); (ptr)->prev = (ptr); /

}while (0)

 

这两个宏是用了定义双向链表的头节点的,定义一个双向链表的头节点,我们可以这样:

 

structlist_head head;

LIST_HEAD_INIT(head);

 

又或者直接这样:

LIST_HEAD(head);

 

这样,我们就定义并初始化了一个头节点。

#defineLIST_HEAD_INIT(name) { &(name), &(name) }

就是用head的地址初始化其两个成员nextprev,使其都指向自己。

 

我们再看下和其相关的几个函数,这些函数都作为内联函数也都定义list.h中,这里要说明一下linux源码的一个风格,在下面的这些函数中以下划线开始的函数是给内部调用的函数,而以符开始的函数就是对外使用的函数,这些函数一般都是调用以下划线开始的函数,或是说是对下划线开始的函数的封装。

 

2.1增加节点的函数

staticinline void __list_add();

staticinline void list_add();

staticinline void list_add_tail();

 

其实看源代码是最好的讲解了,这里我再简单的讲一下。

/**

*__list_add - Insert a new entry between two known consecutiveentries.

*@new:

*@prev:

*@next:

*

*This is only for internal list manipulation where we know theprev/next

*entries already!

*/

static__inline__ void __list_add(struct list_head * new,

structlist_head * prev, struct list_head * next)

{

next->prev= new;

new->next= next;

new->prev= prev;

prev->next= new;

}

这个函数在prevnext间插入一个节点new

 

 

/**

*list_add - add a new entry

*@new:new entry to be added

*@head:list head to add it after

*

*Insert a new entry after the specified head.

*This is good for implementing stacks.

*/

static__inline__ void list_add(struct list_head *new, struct list_head*head)

{

__list_add(new,head, head->next);

}

这个函数在head节点后面插入new节点。

 

/**

*list_add_tail - add a new entry

*@new:new entry to be added

*@head:list head to add it before

*

*Insert a new entry before the specified head.

*This is useful for implementing queues.

*/

static__inline__ void list_add_tail(struct list_head *new, struct list_head*head)

{

__list_add(new,head->prev, head);

}

这个函数和上面的那个函数相反,它在head节点的前面插入new节点。

 

2.2从链表中删除节点的函数

/**

*__list_del -

*@prev:

*@next:

*

*Delete a list entry by making the prev/next entries point to eachother.

*

*This is only for internal list manipulation where we know theprev/next

*entries already!

*/

static__inline__ void __list_del(struct list_head * prev,

structlist_head * next)

{

next->prev= prev;

prev->next= next;

}

 

/**

*list_del - deletes entry from list.

*@entry:the element to delete from the list.

*

*Note: list_empty on entry does not return true after this, the entryis in

*an undefined state.

*/

static__inline__ void list_del(struct list_head *entry)

{

__list_del(entry->prev,entry->next);

}

 

/**

*list_del_init - deletes entry from list and reinitialize it.

*@entry:the element to delete from the list.

*/

static__inline__ void list_del_init(struct list_head *entry)

{

__list_del(entry->prev,entry->next);

INIT_LIST_HEAD(entry);

}

 

这里简单说一下,list_del(structlist_head *entry)是从链表中删除entry节点。list_del_init(structlist_head *entry) 不但从链表中删除节点,还把这个节点的向前向后指针都指向自己,即初始化。

 

那么,我们怎么判断这个链表是不是空的呢!上面我说了,这里的双向链表都是有一个头节点,而我们上面看到,定义一个头节点时我们就初始化了,即它的prevnext指针都指向自己。所以这个函数是这样的。

/**

*list_empty - tests whether a list is empty

*@head:the list to test.

*/

static__inline__ int list_empty(struct list_head *head)

{

returnhead->next == head;

}

 

讲了这几个函数后,这又到了关键了,下面讲解的一个宏的定义就是对第一节中,我们所要说的为什么在一个结构中加入structlist_head变量就把这个结构变成了双向链表呢,这其中的关键就是怎么通过这个structlist_head变量来获取整个结构的变量,下面这个宏就为你解开答案:

 

/**

*list_entry - get the struct for this entry

*@ptr:the &struct list_head pointer.

*@type:the type of the struct this is embedded in.

*@member:the name of the list_struct within the struct.

*/

#definelist_entry(ptr, type, member) /

((type*)((char *)(ptr)-(unsigned long)(&((type *)0)->member)))

 

乍一看下,不知道这个宏在说什么,没关系,我举个例子来为你一一解答:)

 

首先,我们还是用上面的结构:

structperson

{

intage;

int weight;

structlist_head list;

};

 

我们一看到这样的结构就应该知道它定义了一个双向链表,下面来看下。

我们有一个指针:

structlist_head *pos;

现在有这个指针,我们怎么去获得这个指针所在的结构的变量(即是structperson变量,其实是structperson指针)呢?看下面这样使用:

 

structperson *one = list_entry(pos, struct person, list);

 

不明白是吧,展开一下list_entry结构如下:

((structperson *)((char *)(pos) - (unsigned long)(&((struct person*)0)->list)))

 

我慢慢的分解,首先分成两部分(char*)(pos)减去(unsignedlong)(&((struct person *)0)->list)然后转换成(structperson *)类型的指针。

 

(char*)(pos):是将posstructlist_head*转换成char*,这个好理解。

(unsignedlong)(&((struct person *)0)->list):先看最里面的(structperson *)0),它是把0地址转换成structperson指针,然后(structperson *)0)->list就是指向list变量,之后是&((structperson *)0)->list是取这个变量的地址,最后是(unsignedlong)(&((struct person *)0)->list)把这个变量的地址值变成一个整形数!

这么复杂啊,其实说白了,这个(unsignedlong)(&((struct person *)0)->list)的意思就是取list变量在structperson结构中的偏移量。

用个图形来说(unsignedlong)(&((struct person *)0)->list,如下:

 

(unsignedlong)(&((struct person *)0)->list就是获取这个offset的值。

 

((char*)(pos) - (unsigned long)(&((struct person *)0)->list))

 

就是将pos指针往前移动offset位置,即是本来posstructlist_head类型,它即是list。即是把pos指针往structperson结构的头地址位置移动过去,如上图的pos和虚箭头。

pos移到structperson结构头后就转换成(structperson *)指针,这样就可以得到structperson *变量了。

 

所以我们再回到前面的句子

structperson *one = list_entry(pos, struct person, list);

就是由pos得到pos所在的结构的指针,动物就可以这样:

structanimal *one = list_entry(pos, struct animal, list);

 

下面我们再来看下和structlist_head相关的最后一个宏。

 

2.3list_head的遍历的宏

/**

*list_for_each - iterate over a list

*@pos:the &struct list_head to use as a loop counter.

*@head:the head for your list.

*/

#definelist_for_each(pos, head) /

for(pos = (head)->next; pos != (head); pos = pos->next)

 

/**

*list_for_each_safe-iterate over a list safe against removal of listentry

*@pos:the &struct list_head to use as a loop counter.

*@n:another &struct list_head to use as temporary storage

*@head:the head for your list.

*/

#definelist_for_each_safe(pos, n, head) /

for(pos = (head)->next, n = pos->next; pos != (head); /

pos= n, n = pos->next)

 

list_for_each(pos,head)是遍历整个head链表中的每个元素,每个元素都用pos指向。

list_for_each_safe(pos,n,head)是用于删除链表head中的元素,不是上面有删除链表元素的函数了吗,为什么这里又要定义一个这样的宏呢。看下这个宏后面有个safe字,就是说用这个宏来删除是安全的,直接用前面的那些删除函数是不安全的。这个怎么说呢,我们看下下面这个图,有三个元素abc

 

 

 

现在,我们要删除b元素,下面是删除的算法(先只用删除函数):

structlist_head *pos;

list_for_each(pos,myhead)

{

if(pos == b)

list_del_init(pos);

//break;

}

。。。

}

上面的算法是不安全的,因为当我们删除b后,如下图这样:

上删除posb后,list_for_each要移到下一个元素,还需要用pos来取得下一个元素,但pos的指向已经改变,如果不直接退出而是在继续操作的话,就会出错了。

 

list_for_each_safe就不一样了,如果上面的代码改成这样:

structlist_head *pos, *n;

list_for_each_safe(pos,n, myhead)

{

if(pos == b)

list_del_init(pos);

//break;

}

。。。

}

 

这里我们使用了n作为一个临时的指针,当pos被删除后,还可以用n来获得下一个元素的位置。

 

说了那么多关于list_head的东西,下面应该总结一下,总结一下第一节想要解决的问题。请看下章分析。

 

 

 

 

 

原创粉丝点击