c++下的xml解析器

来源:互联网 发布:数据挖掘分析技术 编辑:程序博客网 时间:2024/04/30 04:53

.h

///////////////////

/**
****************************************************************************
* <P> XML.c - implementation file for basic XML parser written in ANSI C++
* for portability. It works by using recursion and a node tree for breaking
* down the elements of an XML document.  </P>
*
* @version     V2.05
* @author      Frank Vanden Berghen
*
* BSD license:
* Copyright (c) 2002, Frank Vanden Berghen
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above copyright
*       notice, this list of conditions and the following disclaimer in the
*       documentation and/or other materials provided with the distribution.
*     * Neither the name of the Frank Vanden Berghen nor the
*       names of its contributors may be used to endorse or promote products
*       derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************
*/
#ifndef __INCLUDE_XML_NODE__
#define __INCLUDE_XML_NODE__

#include <stdlib.h>

#ifdef WIN32
#include <tchar.h>
#else
#include <wchar.h> // to have 'wcsrtombs' for ANSI version
// to have 'mbsrtowcs' for UNICODE version
#endif

// Some common types for char set portable code
#ifdef _UNICODE
#ifndef WIN32
#define _T(c) L ## c
#endif
#define XMLCSTR const wchar_t *
#define XMLSTR  wchar_t *
#define XMLCHAR wchar_t
#else
#ifndef WIN32
#define _T(c) c
#endif
#define XMLCSTR const char *
#define XMLSTR  char *
#define XMLCHAR char
#endif
#ifndef FALSE
#define FALSE 0
#endif /* FALSE */
#ifndef TRUE
#define TRUE 1
#endif /* TRUE */


// Enumeration for XML parse errors.
typedef enum XMLError
{
 eXMLErrorNone = 0,
 eXMLErrorMissingEndTag,
 eXMLErrorEmpty,
 eXMLErrorFirstNotStartTag,
 eXMLErrorMissingTagName,
 eXMLErrorMissingEndTagName,
 eXMLErrorNoMatchingQuote,
 eXMLErrorUnmatchedEndTag,
 eXMLErrorUnmatchedEndClearTag,
 eXMLErrorUnexpectedToken,
 eXMLErrorInvalidTag,
 eXMLErrorNoElements,
 eXMLErrorFileNotFound,
 eXMLErrorFirstTagNotFound,
 eXMLErrorUnknownEscapeSequence,
 eXMLErrorCharConversionError,

 eXMLErrorBase64DataSizeIsNotMultipleOf4,
 eXMLErrorBase64DecodeIllegalCharacter,
 eXMLErrorBase64DecodeTruncatedData,
 eXMLErrorBase64DecodeBufferTooSmall
} XMLError;

// Enumeration used to manage type of data. Use in conjunction with structure XMLNodeContents
typedef enum XMLElementType
{
 eNodeChild=0,
 eNodeAttribute=1,
 eNodeText=2,
 eNodeClear=3,
 eNodeNULL=4
} XMLElementType;

// Structure used to obtain error details if the parse fails.
typedef struct XMLResults
{
 enum XMLError error;
 int  nLine,nColumn;
} XMLResults;

// Structure for XML clear (unformatted) node (usually comments)
typedef struct {
 XMLCSTR lpszValue; XMLCSTR lpszOpenTag; XMLCSTR lpszCloseTag;
} XMLClear;

// Structure for XML attribute.
typedef struct {
 XMLCSTR lpszName; XMLCSTR lpszValue;
} XMLAttribute;

// The variable XMLClearTags below contains the clearTags recognized by the library
// You can modify the initialization of this variable inside the "xmlParser.cpp" file
// to change the clearTags that are currently recognized.
typedef struct {
 XMLCSTR lpszOpen; int openTagLen; XMLCSTR lpszClose;
} ALLXMLClearTag;
extern ALLXMLClearTag XMLClearTags[];

struct XMLNodeContents;

typedef struct XMLNode
{
protected:

 struct XMLNodeDataTag;

 // protected constructor: use one of these four methods to get your first instance of XMLNode:
 //  - parseString
 //  - parseFile
 //  - openFileHelper
 //  - createXMLTopNode
 XMLNode(struct XMLNodeDataTag *pParent, XMLCSTR lpszName, int isDeclaration);

public:

 // You can create your first instance of XMLNode with these 4 functions:
 // (see complete explanation of parameters below)

 static XMLNode createXMLTopNode(XMLCSTR lpszName, int isDeclaration=FALSE);
 static XMLNode parseString   (XMLCSTR      lpszXML, XMLCSTR tag=NULL, XMLResults *pResults=NULL);
 static XMLNode parseFile     (const char *filename, XMLCSTR tag=NULL, XMLResults *pResults=NULL);
 static XMLNode openFileHelper(const char *filename, XMLCSTR tag=NULL                           );

 // The tag parameter should be the name of the first tag inside the XML file.
 // If the tag parameter is omitted, the 3 functions return a node that represents
 // the head of the xml document including the declaration term (<? ... ?>).

 // If the XML document is corrupted:
 //   - The "openFileHelper" method will stop execution and display an error message on the console.
 //   - The 2 other methods will initialize the "pResults" variable with some information that
 //     can be used to trace the error.
 //   - If you still want to parse the file, you can use the APPROXIMATE_PARSING option as
 //     explained inside the note at the beginning of the "xmlParser.cpp" file.
 // You can have a user-friendly explanation of the parsing error with this function:
 static XMLCSTR getError(XMLError error);

 XMLCSTR getName();                                               // name of the node
 XMLCSTR getText(int i=0);                                        // return ith text field
 int nText();                                                     // nbr of text field
 XMLNode getChildNode(int i=0);                                   // return ith child node
 XMLNode getChildNode(XMLCSTR name, int i);                       // return ith child node with specific name
 //     (return an empty node if failing)
 XMLNode getChildNode(XMLCSTR name, int *i=NULL);                 // return next child node with specific name
 //     (return an empty node if failing)
 XMLNode getChildNodeWithAttribute(XMLCSTR tagName,               // return child node with specific name/attribute
  XMLCSTR attributeName,         //     (return an empty node if failing)
  XMLCSTR attributeValue=NULL,   //
  int *i=NULL);                  //
 int nChildNode(XMLCSTR name);                                    // return the number of child node with specific name
 int nChildNode();                                                // nbr of child node
 XMLAttribute getAttribute(int i=0);                              // return ith attribute
 XMLCSTR      getAttributeName(int i=0);                          // return ith attribute name
 XMLCSTR      getAttributeValue(int i=0);                         // return ith attribute name
 char  isAttributeSet(XMLCSTR name);                              // test if an attribute with a specific name is given
 XMLCSTR getAttribute(XMLCSTR name, int i);                       // return ith attribute content with specific name
 //     (return a NULL if failing)
 XMLCSTR getAttribute(XMLCSTR name, int *i=NULL);                 // return next attribute content with specific name
 //     (return a NULL if failing)
 int nAttribute();                                                // nbr of attribute
 XMLClear getClear(int i=0);                                      // return ith clear field (comment)
 int nClear();                                                    // nbr of clear field
 XMLSTR createXMLString(int nFormat, int *pnSize=NULL);           // create XML string starting from current XMLNode
 XMLNodeContents enumContents(int i);                             // enumerate all the different contents (child,text,
 //     clear,attribute) of the current XMLNode. The order
 //     is reflecting the order of the original file/string
 int nElement();                                                  // nbr of different contents for current node
 char isEmpty();                                                  // is this node Empty?
 char isDeclaration();                                            // is this node a declaration <? .... ?>

 // to allow shallow/fast copy:
 ~XMLNode();
 XMLNode(const XMLNode &A);
 XMLNode& operator=( const XMLNode& A );

 XMLNode(): d(NULL){};
 static XMLNode emptyXMLNode;
 static XMLClear emptyXMLClear;
 static XMLAttribute emptyXMLAttribute;

 // The following functions allows you to create from scratch a XMLNode structure
 // Start by creating your top node with the "createXMLTopNode" function and then add new nodes with the "addChild" function.
 // static XMLNode createXMLTopNode();
 XMLNode       addChild(XMLCSTR lpszName, int isDeclaration=FALSE);
 XMLAttribute *addAttribute(XMLCSTR lpszName, XMLCSTR lpszValuev);
 XMLCSTR       addText(XMLCSTR lpszValue);
 XMLClear     *addClear(XMLCSTR lpszValue, XMLCSTR lpszOpen=XMLClearTags[0].lpszOpen, XMLCSTR lpszClose=XMLClearTags[0].lpszClose);
 XMLNode       addChild(XMLNode nodeToAdd);          // If the "nodeToAdd" has some parents, it will be detached
 // from it's parents before being attached to the current XMLNode
 // Some update functions:
 XMLCSTR       updateName(XMLCSTR lpszName);                                                    // change node's name
 XMLAttribute *updateAttribute(XMLAttribute *newAttribute, XMLAttribute *oldAttribute);         // if the attribute to update is missing, a new one will be added
 XMLAttribute *updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName=NULL,int i=0);         // if the attribute to update is missing, a new one will be added
 XMLAttribute *updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName);  // set lpszNewName=NULL if you don't want to change the name of the attribute
 // if the attribute to update is missing, a new one will be added
 XMLCSTR       updateText(XMLCSTR lpszNewValue, int i=0);                                       // if the text to update is missing, a new one will be added
 XMLCSTR       updateText(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue);                          // if the text to update is missing, a new one will be added
 XMLClear     *updateClear(XMLCSTR lpszNewContent, int i=0);                                    // if the clearTag to update is missing, a new one will be added
 XMLClear     *updateClear(XMLClear *newP,XMLClear *oldP);                                      // if the clearTag to update is missing, a new one will be added
 XMLClear     *updateClear(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue);                         // if the clearTag to update is missing, a new one will be added

 // Some deletion functions:
 void deleteNodeContent();                           // delete the content of this XMLNode and the subtree
 void deleteAttribute(XMLCSTR lpszName);
 void deleteAttribute(int i=0);
 void deleteAttribute(XMLAttribute *anAttribute);
 void deleteText(int i=0);
 void deleteText(XMLCSTR lpszValue);
 void deleteClear(int i=0);
 void deleteClear(XMLClear *p);
 void deleteClear(XMLCSTR lpszValue);

 // The strings given as parameters for the following add and update methods (all these methods have
 // a name with the postfix "_WOSD" that means "WithOut String Duplication" ) will be free'd by the
 // XMLNode class. For example, it means that this is incorrect:
 //    xNode.addText_WOSD("foo");
 //    xNode.updateAttribute_WOSD("#newcolor" ,NULL,"color");
 // In opposition, this is correct:
 //    xNode.addText_WOSD(stringDup("foo"));
 //    xNode.updateAttribute_WOSD(stringDup("#newcolor"),NULL,"color");
 // Typically, you will never do:
 //    xNode.addText(base64Encode(...));
 // ... but rather:
 //    xNode.addText_WOSD(base64Encode(...));

 static XMLNode createXMLTopNode_WOSD(XMLCSTR lpszName, int isDeclaration=FALSE);
 XMLNode        addChild_WOSD(XMLCSTR lpszName, int isDeclaration=FALSE);
 XMLAttribute  *addAttribute_WOSD(XMLCSTR lpszName, XMLCSTR lpszValue);
 XMLCSTR        addText_WOSD(XMLCSTR lpszValue);
 XMLClear      *addClear_WOSD(XMLCSTR lpszValue, XMLCSTR lpszOpen=XMLClearTags[0].lpszOpen, XMLCSTR lpszClose=XMLClearTags[0].lpszClose);

 XMLCSTR        updateName_WOSD(XMLCSTR lpszName);
 XMLAttribute  *updateAttribute_WOSD(XMLAttribute *newAttribute, XMLAttribute *oldAttribute);
 XMLAttribute  *updateAttribute_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszNewName=NULL,int i=0);
 XMLAttribute  *updateAttribute_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName);
 XMLCSTR        updateText_WOSD(XMLCSTR lpszNewValue, int i=0);
 XMLCSTR        updateText_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue);
 XMLClear      *updateClear_WOSD(XMLCSTR lpszNewContent, int i=0);
 XMLClear      *updateClear_WOSD(XMLClear *newP,XMLClear *oldP);
 XMLClear      *updateClear_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue);

 static void setGlobalOptions(char guessUnicodeChars=1, char strictUTF8Parsing=1);
 //
 // First of all, you most-probably will never have to change these 2 global parameters.
 // About the "guessUnicodeChars" parameter:
 //     If "guessUnicodeChars=1" and if this library is compiled in UNICODE mode, then the
 //     "parseFile" and "openFileHelper" functions will test if the file contains ASCII
 //     characters. If this is the case, then the file will be loaded and converted in memory to
 //     UNICODE before being parsed. If "guessUnicodeChars=0", no conversion will
 //     be performed.
 //
 //     If "guessUnicodeChars=1" and if this library is compiled in ASCII/UTF8 mode, then the
 //     "parseFile" and "openFileHelper" functions will test if the file contains UNICODE
 //     characters. If this is the case, then the file will be loaded and converted in memory to
 //     ASCII/UTF8 before being parsed. If "guessUnicodeChars=0", no conversion will
 //     be performed
 //
 //     Sometime, it's useful to set "guessUnicodeChars=0" to disable any conversion
 //     because the test to detect the file-type (ASCII/UTF8 or UNICODE) may fail (rarely).
 //
 // About the "strictUTF8Parsing" parameter:
 //     If "strictUTF8Parsing=0" then we assume that all characters have the same length of 1 byte.
 //     If "strictUTF8Parsing=1" then the characters have different lengths (from 1 byte to 4 bytes)
 //     depending on the content of the first byte of the character.

 static char guessUTF8ParsingParameterValue(void *buffer, int bufLen, char useXMLEncodingAttribute=1);
 // First of all, you most-probably will never have to use this function.
 // This function try to guess if the character encoding is UTF-8. It then returns the appropriate
 // value of the global parameter "strictUTF8Parsing" described above. The guess is based on the
 // content of a buffer of length "bufLen" bytes that contains the first bytes (minimum 25
 // bytes; 200 bytes is a good value) of the file to be parsed. The "openFileHelper" function is
 // using this function to automatically compute the value of the "strictUTF8Parsing" global parameter.
 // There are several heuristics used to do the guess. One of the heuristic is based on "encoding"
 // attribute. The original XML specifications forbids to use this attribute to do the guess but
 // you can still use it if you set "useXMLEncodingAttribute" to 1.

protected:

 // these are functions and structures used internally by the XMLNode class (don't bother about them):

 typedef struct XMLNodeDataTag // to allow shallow copy and "intelligent/smart" pointers (automatic delete):
 {
  XMLCSTR                lpszName;        // Element name (=NULL if root)
  int                    nChild,          // Num of child nodes
   nText,           // Num of text fields
   nClear,          // Num of Clear fields (comments)
   nAttribute,      // Num of attributes
   isDeclaration;   // Whether node is an XML declaration - '<?xml ?>'
  struct XMLNodeDataTag  *pParent;        // Pointer to parent element (=NULL if root)
  XMLNode                *pChild;         // Array of child nodes
  XMLCSTR                *pText;          // Array of text fields
  XMLClear               *pClear;         // Array of clear fields
  XMLAttribute           *pAttribute;     // Array of attributes
  int                    *pOrder;         // order in which the child_nodes,text_fields,clear_fields and
  int                    ref_count;       // for garbage collection (smart pointers)
 } XMLNodeData;
 XMLNodeData *d;

private:

 static void destroyCurrentBuffer(XMLNodeData *d);
 int ParseClearTag(void *pXML, void *pClear);
 int ParseXMLElement(void *pXML);
 void addToOrder(int index, int type);
 static int CreateXMLStringR(XMLNodeData *pEntry, XMLSTR lpszMarker, int nFormat);
 static void *enumContent(XMLNodeData *pEntry,int i, XMLElementType *nodeType);
 static int nElement(XMLNodeData *pEntry);
 static void removeOrderElement(XMLNodeData *d, XMLElementType t, int index);
 static void exactMemory(XMLNodeData *d);
 static void detachFromParent(XMLNodeData *d);
} XMLNode;

// This structure is given by the function "enumContents".
typedef struct XMLNodeContents
{
 // This dictates what's the content of the XMLNodeContent
 enum XMLElementType type;
 // should be an union to access the appropriate data.
 // compiler does not allow union of object with constructor... too bad.
 XMLNode child;
 XMLAttribute attrib;
 XMLCSTR text;
 XMLClear clear;

} XMLNodeContents;

// Duplicate (copy in a new allocated buffer) the source string. This is
// a very handy function when used with all the "XMLNode::*_WOSD" functions.
// (If (cbData!=0) then cbData is the number of chars to duplicate)
XMLSTR stringDup(XMLCSTR source, int cbData=0);

// The 3 following functions are processing strings so that all the characters
// &,",',<,> are replaced by their XML equivalent: &amp;, &quot;, &apos;, &lt;, &gt;.
// These 3 functions are useful when creating from scratch an XML file using the
// "printf", "fprintf", "cout",... functions. If you are creating from scratch an
// XML file using the provided XMLNode class you cannot use these functions (the
// XMLNode class does the processing job for you during rendering). The second
// function ("toXMLStringFast") allows you to re-use the same output buffer
// for all the conversions so that only a few memory allocations are performed.
// If the output buffer is too small to contain the resulting string, it will
// be enlarged.
XMLSTR toXMLString(XMLCSTR source);
XMLSTR toXMLStringFast(XMLSTR *destBuffer,int *destSz, XMLCSTR source);

// you should not use this one (there is a possibility of "destination-buffer-overflow"):
XMLSTR toXMLString(XMLSTR dest,XMLCSTR source);

// Below are four functions that allows you to include any binary data (images, sounds,...)
// into an XML document using "Base64 encoding". These 4 functions are completely
// separated from the rest of the xmlParser library and can be removed without any problem.
// To include some binary data into an XML file, you must convert the binary data into
// standard text (using "base64Encode"). To retrieve the original binary data from the
// encoded text included inside the XML file use "base64Decode". Alternatively, these
// functions can also be used to "encrypt/decrypt" some critical data contained inside
// the XML.

// Returns a string containing the base64 encoding of "inByteLen" bytes from "inByteBuf"
// If "formatted" parameter is true, then there will be a carriage-return every 72 chars.
// The string length (in char) is optionally returned inside "outStringLen".
XMLSTR base64Encode(char *inByteBuf, unsigned int inByteLen, char formatted=0, unsigned int *outStringLen=NULL);

// returns a pointer to a newly allocated region containing the binary data decoded from "inString"
// If "inString" is malformed NULL will be returned
char* base64Decode(XMLCSTR inString, unsigned int *outByteLen=NULL, XMLError *xe=NULL);

// returns the number of bytes which will be decoded from "inString".
unsigned int base64DecodeSize(XMLCSTR inString, XMLError *xe=NULL);

// decodes data into "outByteBuf". You need to provide the size of in "inMaxByteBuflen"
// If "outByteBuf" is not large enough or if data is malformed, then "FALSE"
// will be returned; otherwise "TRUE"
char base64Decode(XMLCSTR inString, char *outByteBuf, unsigned int inMaxByteBuflen, XMLError *xe=NULL);

#endif

.cpp

///////////////////

/**
****************************************************************************
* <P> XML.c - implementation file for basic XML parser written in ANSI C++
* for portability. It works by using recursion and a node tree for breaking
* down the elements of an XML document.  </P>
*
* @version     V2.05
* @author      Frank Vanden Berghen
*
* NOTE:
*
*   If you add "#define STRICT_PARSING", on the first line of this file
*   the parser will see the following XML-stream:
*      <a><b>some text</b><b>other text    </a>
*   as an error. Otherwise, this tring will be equivalent to:
*      <a><b>some text</b><b>other text</b></a>
*
* NOTE:
*
*   If you add "#define APPROXIMATE_PARSING", on the first line of this file
*   the parser will see the following XML-stream:
*     <data name="n1">
*     <data name="n2">
*     <data name="n3" />
*   as equivalent to the following XML-stream:
*     <data name="n1" />
*     <data name="n2" />
*     <data name="n3" />
*   This can be useful for badly-formed XML-streams but prevent the use
*   of the following XML-stream (problem is: tags at contiguous levels
*   have the same names):
*     <data name="n1">
*        <data name="n2">
*            <data name="n3" />
*        </data>
*     </data>
*
* BSD license:
* Copyright (c) 2002, Frank Vanden Berghen
* All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
*     * Redistributions of source code must retain the above copyright
*       notice, this list of conditions and the following disclaimer.
*     * Redistributions in binary form must reproduce the above copyright
*       notice, this list of conditions and the following disclaimer in the
*       documentation and/or other materials provided with the distribution.
*     * Neither the name of the Frank Vanden Berghen nor the
*       names of its contributors may be used to endorse or promote products
*       derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************
*/
#ifdef WIN32
//#ifdef _DEBUG
//#define _CRTDBG_MAP_ALLOC
//#include <crtdbg.h>
//#endif
#define WIN32_LEAN_AND_MEAN
#ifndef _CRT_SECURE_NO_DEPRECATE
#define _CRT_SECURE_NO_DEPRECATE
#endif
#include <Windows.h> // to have IsTextUnicode, MultiByteToWideChar, WideCharToMultiByte to handle unicode files
// to have "MessageBoxA" to display error messages for openFilHelper
#endif

#include <memory.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "myxml.h"

inline int mmin( const int t1, const int t2 ) { return t1 < t2 ? t1 : t2; }

// You can modify the initialization of the variable "XMLClearTags" below
// to change the clearTags that are currently recognized by the library.
ALLXMLClearTag XMLClearTags[] =
{
 {    _T("<![CDATA["),9,  _T("]]>")      },
 {    _T("<PRE>")    ,5,  _T("</PRE>")   },
 {    _T("<Script>") ,8,  _T("</Script>")},
 {    _T("<!--")     ,4,  _T("-->")      },
 {    _T("<!DOCTYPE"),9,  _T(">")        },
 {    NULL           ,0,  NULL           }
};

// You can modify the initialization of the variable "XMLEntities" below
// to change the character entities that are currently recognized by the library.
// Additionally, the syntax "&#xA0;" or "&#160;" is recognized.
typedef struct { XMLCSTR s; int l; XMLCHAR c;} XMLCharacterEntity;
static XMLCharacterEntity XMLEntities[] =
{
 { _T("&amp;" ), 5, _T('&' )},
 { _T("&lt;"  ), 4, _T('<' )},
 { _T("&gt;"  ), 4, _T('>' )},
 { _T("&quot;"), 6, _T('/"')},
 { _T("&apos;"), 6, _T('/'')},
 { NULL        , 0, '/0'    }
};

// When rendering the XMLNode to a string (using the "createXMLString" funtion),
// you can ask for a beautiful formatting. This formatting is using the
// following indentation character:
#define INDENTCHAR _T('/t')

// The following function parses the XML errors into a user friendly string.
// You can edit this to change the output language of the library to something else.
XMLCSTR XMLNode::getError(XMLError xerror)
{
 switch (xerror)
 {
 case eXMLErrorNone:                  return _T("No error");
 case eXMLErrorMissingEndTag:         return _T("Warning: Unmatched end tag");
 case eXMLErrorEmpty:                 return _T("Error: No XML data");
 case eXMLErrorFirstNotStartTag:      return _T("Error: First token not start tag");
 case eXMLErrorMissingTagName:        return _T("Error: Missing start tag name");
 case eXMLErrorMissingEndTagName:     return _T("Error: Missing end tag name");
 case eXMLErrorNoMatchingQuote:       return _T("Error: Unmatched quote");
 case eXMLErrorUnmatchedEndTag:       return _T("Error: Unmatched end tag");
 case eXMLErrorUnmatchedEndClearTag:  return _T("Error: Unmatched clear tag end");
 case eXMLErrorUnexpectedToken:       return _T("Error: Unexpected token found");
 case eXMLErrorInvalidTag:            return _T("Error: Invalid tag found");
 case eXMLErrorNoElements:            return _T("Error: No elements found");
 case eXMLErrorFileNotFound:          return _T("Error: File not found");
 case eXMLErrorFirstTagNotFound:      return _T("Error: First Tag not found");
 case eXMLErrorUnknownEscapeSequence: return _T("Error: Unknown character entity");
 case eXMLErrorCharConversionError:   return _T("Error: unable to convert between UNICODE and MultiByte chars");

 case eXMLErrorBase64DataSizeIsNotMultipleOf4: return _T("Warning: Base64-string length is not a multiple of 4");
 case eXMLErrorBase64DecodeTruncatedData:      return _T("Warning: Base64-string is truncated");
 case eXMLErrorBase64DecodeIllegalCharacter:   return _T("Error: Base64-string contains an illegal character");
 case eXMLErrorBase64DecodeBufferTooSmall:     return _T("Error: Base64 decode output buffer is too small");
 };
 return _T("Unknown");
}

#ifndef _UNICODE
// If "strictUTF8Parsing=0" then we assume that all characters have the same length of 1 byte.
// If "strictUTF8Parsing=1" then the characters have different lengths (from 1 byte to 4 bytes).
// This table is used as lookup-table to know the length of a character (in byte) based on the
// content of the first byte of the character.
// (note: if you modify this, you must always have XML_utf8ByteTable[0]=0 ).
static const char XML_utf8ByteTable[256] =
{
 //  0 1 2 3 4 5 6 7 8 9 a b c d e f
 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x00
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x10
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x20
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x30
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x40
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x50
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x60
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x70End of ASCII range
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x80 0x80 to 0xc1 invalid
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0x90
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xa0
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,// 0xb0
  1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xc0 0xc2 to 0xdf 2 byte
  2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,// 0xd0
  3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,// 0xe0 0xe0 to 0xef 3 byte
  4,4,4,4,4,1,1,1,1,1,1,1,1,1,1,1 // 0xf0 0xf0 to 0xf4 4 byte, 0xf5 and higher invalid
};
#endif

// Here is an abstraction layer to access some common string manipulation functions.
// The abstraction layer is currently working for gcc, Microsoft Visual Studio 6.0,
// Microsoft Visual Studio .NET, CC (sun compiler).
// If you plan to "port" the library to a new system/compiler, all you have to do is
// to edit the following lines.
#ifdef WIN32
// for Microsoft Visual Studio 6.0 and Microsoft Visual Studio .NET,
char myIsTextUnicode(const void *b,int l) { return IsTextUnicode((CONST LPVOID)b,l,NULL); };
#ifdef _UNICODE
wchar_t *myMultiByteToWideChar(const char *s,int l)
{
 int i=(int)MultiByteToWideChar(CP_ACP,  // code page
  MB_PRECOMPOSED,           // character-type options
  s,                        // string to map
  l,                        // number of bytes in string
  NULL,                        // wide-character buffer
  0);     // size of buffer
 if (i<0) return NULL;
 wchar_t *d=(wchar_t *)malloc((i+1)*sizeof(XMLCHAR));
 MultiByteToWideChar(CP_ACP,  // code page
  MB_PRECOMPOSED,           // character-type options
  s,                        // string to map
  l,                        // number of bytes in string
  d,                        // wide-character buffer
  i);     // size of buffer
 d[i]=0;
 return d;
}
#else
char *myWideCharToMultiByte(const wchar_t *s,int l)
{
 int i=(int)WideCharToMultiByte(CP_ACP,  // code page
  0,                       // performance and mapping flags
  s,                       // wide-character string
  l,                       // number of chars in string
  NULL,                       // buffer for new string
  0,                       // size of buffer
  NULL,                    // default for unmappable chars
  NULL                     // set when default char used
  );
 if (i<0) return NULL;
 char *d=(char*)malloc(i+1);
 WideCharToMultiByte(CP_ACP,  // code page
  0,                       // performance and mapping flags
  s,                       // wide-character string
  l,                       // number of chars in string
  d,                       // buffer for new string
  i,                       // size of buffer
  NULL,                    // default for unmappable chars
  NULL                     // set when default char used
  );
 d[i]=0;
 return d;
}
#endif
#else
// for gcc and CC
char myIsTextUnicode(const void *b, int len) // inspired by the Wine API: RtlIsTextUnicode
{
 const wchar_t *s=(const wchar_t*)b;

 // buffer too small:
 if (len<(int)sizeof(wchar_t)) return FALSE;

 // odd length
 if (len&1) return FALSE;

 /* only checks the first 256 characters */
 len=mmin(256,len/sizeof(wchar_t));

 // Check for the special byte order:
 if (*s == 0xFFFE) return FALSE;     // IS_TEXT_UNICODE_REVERSE_SIGNATURE;
 if (*s == 0xFEFF) return TRUE;      // IS_TEXT_UNICODE_SIGNATURE

 // checks for ASCII characters in the UNICODE stream
 int i,stats=0;
 for (i=0; i<len; i++) if (s[i]<=(unsigned short)255) stats++;
 if (stats>len/2) return TRUE;

 // Check for UNICODE NULL chars
 for (i=0; i<len; i++) if (!s[i]) return TRUE;

 return FALSE;
}
#ifdef _UNICODE
wchar_t *myMultiByteToWideChar(const  char   *s, int l)
{
 const char *ss=s;
 int i=(int)mbsrtowcs(NULL,&ss,0,NULL);
 if (i<0) return NULL;
 wchar_t *d=(wchar_t *)malloc((i+1)*sizeof(wchar_t));
 mbsrtowcs(d,&s,l,NULL);
 d[i]=0;
 return d;
}
int _tcslen(XMLCSTR c)   { return wcslen(c); }
#ifdef sun
// for CC
#include <widec.h>
int _tcsnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return wsncasecmp(c1,c2,l);}
int _tcsicmp(XMLCSTR c1, XMLCSTR c2) { return wscasecmp(c1,c2); }
#else
// for gcc
int _tcsnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return wcsncasecmp(c1,c2,l);}
int _tcsicmp(XMLCSTR c1, XMLCSTR c2) { return wcscasecmp(c1,c2); }
#endif
XMLSTR _tcsstr(XMLCSTR c1, XMLCSTR c2) { return (XMLSTR)wcsstr(c1,c2); }
XMLSTR _tcscpy(XMLSTR c1, XMLCSTR c2) { return (XMLSTR)wcscpy(c1,c2); }
#else
char *myWideCharToMultiByte(const wchar_t *s, int l)
{
 const wchar_t *ss=s;
 int i=(int)wcsrtombs(NULL,&ss,0,NULL);
 if (i<0) return NULL;
 char *d=(char *)malloc(i+1);
 wcsrtombs(d,&s,i,NULL);
 d[i]=0;
 return d;
}
int _tcslen(XMLCSTR c)   { return strlen(c); }
int _tcsnicmp(XMLCSTR c1, XMLCSTR c2, int l) { return strncasecmp(c1,c2,l);}
int _tcsicmp(XMLCSTR c1, XMLCSTR c2) { return strcasecmp(c1,c2); }
XMLSTR _tcsstr(XMLCSTR c1, XMLCSTR c2) { return (XMLSTR)strstr(c1,c2); }
XMLSTR _tcscpy(XMLSTR c1, XMLCSTR c2) { return (XMLSTR)strcpy(c1,c2); }
#endif
int _strnicmp(char *c1, char *c2, int l) { return strncasecmp(c1,c2,l);}
#endif

/////////////////////////////////////////////////////////////////////////
//      Here start the core implementation of the XMLParser library    //
/////////////////////////////////////////////////////////////////////////

// You should normally not change anything below this point.
// For your own information, I suggest that you read the openFileHelper below:
XMLNode XMLNode::openFileHelper(const char *filename, XMLCSTR tag)
{
 // guess the value of the global parameter "strictUTF8Parsing"
 // (the guess is based on the first 200 bytes of the file).
 FILE *f=fopen(filename,"rb");
 if (f)
 {
  char bb[201];
  int l=(int)fread(bb,1,200,f);
  setGlobalOptions(1,guessUTF8ParsingParameterValue(bb,l,1));
  fclose(f);
 }

 // parse the file
 XMLResults pResults;
 XMLNode xnode=XMLNode::parseFile(filename,tag,&pResults);

 // display error message (if any)
 if (pResults.error != eXMLErrorNone)
 {
  // create message
  char message[2000],*s1="",*s3=""; XMLCSTR s2=_T("");
  if (pResults.error==eXMLErrorFirstTagNotFound) { s1="First Tag should be '"; s2=tag; s3="'./n"; }
  sprintf(message,
#ifdef _UNICODE
   "XML Parsing error inside file '%s'./n%S/nAt line %i, column %i./n%s%S%s"
#else
   "XML Parsing error inside file '%s'./n%s/nAt line %i, column %i./n%s%s%s"
#endif
   ,filename,XMLNode::getError(pResults.error),pResults.nLine,pResults.nColumn,s1,s2,s3);

  // display message
#ifdef WIN32
  MessageBoxA(NULL,message,"XML Parsing error",MB_OK|MB_ICONERROR|MB_TOPMOST);
#else
  printf("%s",message);
#endif
  exit(255);
 }
 return xnode;
}

static char guessUnicodeChars=1;

#ifndef _UNICODE
static const char XML_asciiByteTable[256] =
{
 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
};
static const char *XML_ByteTable=(const char *)XML_utf8ByteTable; // the default is "strictUTF8Parsing=1"
#endif

// Duplicate a given string.
XMLSTR stringDup(XMLCSTR lpszData, int cbData)
{
 if (lpszData==NULL) return NULL;

 XMLSTR lpszNew;
 if (cbData==0) cbData=(int)_tcslen(lpszData);
 lpszNew = (XMLSTR)malloc((cbData+1) * sizeof(XMLCHAR));
 if (lpszNew)
 {
  memcpy(lpszNew, lpszData, (cbData) * sizeof(XMLCHAR));
  lpszNew[cbData] = (XMLCHAR)NULL;
 }
 return lpszNew;
}

XMLNode XMLNode::emptyXMLNode;
XMLClear XMLNode::emptyXMLClear={ NULL, NULL, NULL};
XMLAttribute XMLNode::emptyXMLAttribute={ NULL, NULL};

// Enumeration used to decipher what type a token is
typedef enum XMLTokenTypeTag
{
 eTokenText = 0,
 eTokenQuotedText,
 eTokenTagStart,         /* "<"            */
 eTokenTagEnd,           /* "</"           */
 eTokenCloseTag,         /* ">"            */
 eTokenEquals,           /* "="            */
 eTokenDeclaration,      /* "<?"           */
 eTokenShortHandClose,   /* "/>"           */
 eTokenClear,
 eTokenError
} XMLTokenType;

// Main structure used for parsing XML
typedef struct XML
{
 XMLCSTR                lpXML;
 int                    nIndex,nIndexMissigEndTag;
 enum XMLError          error;
 XMLCSTR                lpEndTag;
 int                    cbEndTag;
 XMLCSTR                lpNewElement;
 int                    cbNewElement;
 int                    nFirst;
} XML;

typedef struct
{
 ALLXMLClearTag *pClr;
 XMLCSTR     pStr;
} NextToken;

// Enumeration used when parsing attributes
typedef enum Attrib
{
 eAttribName = 0,
 eAttribEquals,
 eAttribValue
} Attrib;

// Enumeration used when parsing elements to dictate whether we are currently
// inside a tag
typedef enum Status
{
 eInsideTag = 0,
 eOutsideTag
} Status;

// private (used while rendering):
XMLSTR toXMLString(XMLSTR dest,XMLCSTR source)
{
 XMLSTR dd=dest;
 XMLCHAR ch;
 XMLCharacterEntity *entity;
 while ((ch=*source))
 {
  entity=XMLEntities;
  do
  {
   if (ch==entity->c) {_tcscpy(dest,entity->s); dest+=entity->l; source++; goto out_of_loop1; }
   entity++;
  } while(entity->s);
#ifdef _UNICODE
  *(dest++)=*(source++);
#else
  switch(XML_ByteTable[(unsigned char)ch])
  {
  case 4: *(dest++)=*(source++);
  case 3: *(dest++)=*(source++);
  case 2: *(dest++)=*(source++);
  case 1: *(dest++)=*(source++);
  }
#endif
out_of_loop1:
  ;
 }
 *dest=0;
 return dd;
}

// private (used while rendering):
int lengthXMLString(XMLCSTR source)
{
 int r=0;
 XMLCharacterEntity *entity;
 XMLCHAR ch;
 while ((ch=*source))
 {
  entity=XMLEntities;
  do
  {
   if (ch==entity->c) { r+=entity->l; source++; goto out_of_loop1; }
   entity++;
  } while(entity->s);
#ifdef _UNICODE
  r++; source++;
#else
  ch=XML_ByteTable[(unsigned char)ch]; r+=ch; source+=ch;
#endif
out_of_loop1:
  ;
 }
 return r;
}

XMLSTR toXMLString(XMLCSTR source)
{
 XMLSTR dest=(XMLSTR)malloc((lengthXMLString(source)+1)*sizeof(XMLCHAR));
 return toXMLString(dest,source);
}

XMLSTR toXMLStringFast(XMLSTR *dest,int *destSz, XMLCSTR source)
{
 int l=lengthXMLString(source)+1;
 if (l>*destSz) { *destSz=l; *dest=(XMLSTR)realloc(*dest,l*sizeof(XMLCHAR)); }
 return toXMLString(*dest,source);
}

// private:
XMLSTR fromXMLString(XMLCSTR s, int lo, XML *pXML)
{
 // This function is the opposite of the function "toXMLString". It decodes the escape
 // sequences &amp;, &quot;, &apos;, &lt;, &gt; and replace them by the characters
 // &,",',<,>. This function is used internally by the XML Parser. All the calls to
 // the XML library will always gives you back "decoded" strings.
 //
 // in: string (s) and length (lo) of string
 // out:  new allocated string converted from xml
 if (!s) return NULL;

 int ll=0,j;
 XMLSTR d;
 XMLCSTR ss=s;
 XMLCharacterEntity *entity;
 while ((lo>0)&&(*s))
 {
  if (*s==_T('&'))
  {
   if ((lo>2)&&(s[1]==_T('#')))
   {
    s+=2; lo-=2;
    if ((*s==_T('X'))||(*s==_T('x'))) { s++; lo--; }
    while (((lo--)>0)&&(*s)&&(*s!=_T(';'))) s++;
    if (*s!=_T(';'))
    {
     pXML->error=eXMLErrorUnknownEscapeSequence;
     return NULL;
    }
    s++; lo--;
   } else
   {
    entity=XMLEntities;
    do
    {
     if ((lo>=entity->l)&&(_tcsnicmp(s,entity->s,entity->l)==0)) { s+=entity->l; lo-=entity->l; break; }
     entity++;
    } while(entity->s);
    if (!entity->s)
    {
     pXML->error=eXMLErrorUnknownEscapeSequence;
     return NULL;
    }
   }
  } else
  {
#ifdef _UNICODE
   s++; lo--;
#else
   j=XML_ByteTable[(unsigned char)*s]; s+=j; lo-=j; ll+=j-1;
#endif
  }
  ll++;
 }

 d=(XMLSTR)malloc((ll+1)*sizeof(XMLCHAR));
 s=d;
 while (ll-->0)
 {
  if (*ss==_T('&'))
  {
   if (ss[1]==_T('#'))
   {
    ss+=2; j=0;
    if ((*ss==_T('X'))||(*ss==_T('x')))
    {
     ss++;
     while (*ss!=_T(';'))
     {
      if ((*ss>=_T('0'))&&(*ss<=_T('9'))) j=(j<<4)+*ss-_T('0');
      else if ((*ss>=_T('A'))&&(*ss<=_T('F'))) j=(j<<4)+*ss-_T('A')+10;
      else if ((*ss>=_T('a'))&&(*ss<=_T('f'))) j=(j<<4)+*ss-_T('a')+10;
      else { free(d); pXML->error=eXMLErrorUnknownEscapeSequence;return NULL;}
      ss++;
     }
    } else
    {
     while (*ss!=_T(';'))
     {
      if ((*ss>=_T('0'))&&(*ss<=_T('9'))) j=(j*10)+*ss-_T('0');
      else { free(d); pXML->error=eXMLErrorUnknownEscapeSequence;return NULL;}
      ss++;
     }
    }
    (*d++)=(XMLCHAR)j; ss++;
   } else
   {
    entity=XMLEntities;
    do
    {
     if (_tcsnicmp(ss,entity->s,entity->l)==0) { *(d++)=entity->c; ss+=entity->l; break; }
     entity++;
    } while(entity->s);
   }
  } else
  {
#ifdef _UNICODE
   *(d++)=*(ss++);
#else
   switch(XML_ByteTable[(unsigned char)*ss])
   {
   case 4: *(d++)=*(ss++); ll--;
   case 3: *(d++)=*(ss++); ll--;
   case 2: *(d++)=*(ss++); ll--;
   case 1: *(d++)=*(ss++);
   }
#endif
  }
 }
 *d=0;
 return (XMLSTR)s;
}

#define XML_isSPACECHAR(ch) ((ch==_T('/n'))||(ch==_T(' '))||(ch== _T('/t'))||(ch==_T('/r')))

// private:
char myTagCompare(XMLCSTR cclose, XMLCSTR copen)
// !!!! WARNING strange convention&:
// return 0 if equals
// return 1 if different
{
 if (!cclose) return 1;
 int l=(int)_tcslen(cclose);
 if (_tcsnicmp(cclose, copen, l)!=0) return 1;
 const XMLCHAR c=copen[l];
 if (XML_isSPACECHAR(c)||
  (c==_T('/' ))||
  (c==_T('<' ))||
  (c==_T('>' ))||
  (c==_T('=' ))) return 0;
 return 1;
}

// private:
// update "order" information when deleting a content of a XMLNode
void XMLNode::removeOrderElement(XMLNodeData *d, XMLElementType t, int index)
{
 int j=(int)((index<<2)+t),i=0,n=nElement(d)+1, *o=d->pOrder;
 while ((o[i]!=j)&&(i<n)) i++;
 n--;
 memmove(o+i, o+i+1, (n-i)*sizeof(int));
 for (;i<n;i++)
  if ((o[i]&3)==(int)t) o[i]-=4;
 // We should normally do:
 // d->pOrder=(int)realloc(d->pOrder,n*sizeof(int));
 // but we skip reallocation because it's too time consuming.
 // Anyway, at the end, it will be free'd completely at once.
}

// Obtain the next character from the string.
static inline XMLCHAR getNextChar(XML *pXML)
{
 XMLCHAR ch = pXML->lpXML[pXML->nIndex];
#ifdef _UNICODE
 if (ch!=0) pXML->nIndex++;
#else
 pXML->nIndex+=XML_ByteTable[(unsigned char)ch];
#endif
 return ch;
}

// Find the next token in a string.
// pcbToken contains the number of characters that have been read.
static NextToken GetNextToken(XML *pXML, int *pcbToken, enum XMLTokenTypeTag *pType)
{
 NextToken        result;
 XMLCHAR            ch;
 XMLCHAR            chTemp;
 int              indexStart,nFoundMatch,nIsText=FALSE;
 result.pClr=NULL; // prevent warning

 // Find next non-white space character
 do { indexStart=pXML->nIndex; ch=getNextChar(pXML); } while XML_isSPACECHAR(ch);

 if (ch)
 {
  // Cache the current string pointer
  result.pStr = &pXML->lpXML[indexStart];

  // First check whether the token is in the clear tag list (meaning it
  // does not need formatting).
  ALLXMLClearTag *ctag=XMLClearTags;
  do
  {
   if (_tcsnicmp(ctag->lpszOpen, result.pStr, ctag->openTagLen)==0)
   {
    result.pClr=ctag;
    pXML->nIndex+=ctag->openTagLen-1;
    *pType=eTokenClear;
    return result;
   }
   ctag++;
  } while(ctag->lpszOpen);

  // If we didn't find a clear tag then check for standard tokens
  switch(ch)
  {
   // Check for quotes
  case _T('/''):
  case _T('/"'):
   // Type of token
   *pType = eTokenQuotedText;
   chTemp = ch;

   // Set the size
   nFoundMatch = FALSE;

   // Search through the string to find a matching quote
   while((ch = getNextChar(pXML)))
   {
    if (ch==chTemp) { nFoundMatch = TRUE; break; }
    if (ch==_T('<')) break;
   }

   // If we failed to find a matching quote
   if (nFoundMatch == FALSE)
   {
    pXML->nIndex=indexStart+1;
    nIsText=TRUE;
    break;
   }

   //  4.02.2002
   //            if (FindNonWhiteSpace(pXML)) pXML->nIndex--;

   break;

   // Equals (used with attribute values)
  case _T('='):
   *pType = eTokenEquals;
   break;

   // Close tag
  case _T('>'):
   *pType = eTokenCloseTag;
   break;

   // Check for tag start and tag end
  case _T('<'):

   // Peek at the next character to see if we have an end tag '</',
   // or an xml declaration '<?'
   chTemp = pXML->lpXML[pXML->nIndex];

   // If we have a tag end...
   if (chTemp == _T('/'))
   {
    // Set the type and ensure we point at the next character
    getNextChar(pXML);
    *pType = eTokenTagEnd;
   }

   // If we have an XML declaration tag
   else if (chTemp == _T('?'))
   {

    // Set the type and ensure we point at the next character
    getNextChar(pXML);
    *pType = eTokenDeclaration;
   }

   // Otherwise we must have a start tag
   else
   {
    *pType = eTokenTagStart;
   }
   break;

   // Check to see if we have a short hand type end tag ('/>').
  case _T('/'):

   // Peek at the next character to see if we have a short end tag '/>'
   chTemp = pXML->lpXML[pXML->nIndex];

   // If we have a short hand end tag...
   if (chTemp == _T('>'))
   {
    // Set the type and ensure we point at the next character
    getNextChar(pXML);
    *pType = eTokenShortHandClose;
    break;
   }

   // If we haven't found a short hand closing tag then drop into the
   // text process

   // Other characters
  default:
   nIsText = TRUE;
  }

  // If this is a TEXT node
  if (nIsText)
  {
   // Indicate we are dealing with text
   *pType = eTokenText;
   while((ch = getNextChar(pXML)))
   {
    if XML_isSPACECHAR(ch)
    {
     indexStart++; break;

    } else if (ch==_T('/'))
    {
     // If we find a slash then this maybe text or a short hand end tag
     // Peek at the next character to see it we have short hand end tag
     ch=pXML->lpXML[pXML->nIndex];
     // If we found a short hand end tag then we need to exit the loop
     if (ch==_T('>')) { pXML->nIndex--; break; }

    } else if ((ch==_T('<'))||(ch==_T('>'))||(ch==_T('=')))
    {
     pXML->nIndex--; break;
    }
   }
  }
  *pcbToken = pXML->nIndex-indexStart;
 } else
 {
  // If we failed to obtain a valid character
  *pcbToken = 0;
  *pType = eTokenError;
  result.pStr=NULL;
 }

 return result;
}

XMLCSTR XMLNode::updateName_WOSD(XMLCSTR lpszName)
{
 if (d->lpszName&&(lpszName!=d->lpszName)) free((void*)d->lpszName);
 d->lpszName=lpszName;
 return lpszName;
}

// private:
XMLNode::XMLNode(XMLNodeData *pParent, XMLCSTR lpszName, int isDeclaration)
{
 d=(XMLNodeData*)malloc(sizeof(XMLNodeData));
 d->ref_count=1;

 d->lpszName=NULL;
 d->nChild= 0;
 d->nText = 0;
 d->nClear = 0;
 d->nAttribute = 0;

 d->isDeclaration = isDeclaration;

 d->pParent = pParent;
 d->pChild= NULL;
 d->pText= NULL;
 d->pClear= NULL;
 d->pAttribute= NULL;
 d->pOrder= NULL;

 updateName_WOSD(lpszName);
}

XMLNode XMLNode::createXMLTopNode_WOSD(XMLCSTR lpszName, int isDeclaration) { return XMLNode(NULL,lpszName,isDeclaration); }
XMLNode XMLNode::createXMLTopNode(XMLCSTR lpszName, int isDeclaration) { return XMLNode(NULL,stringDup(lpszName),isDeclaration); }

#define MEMORYINCREASE 50
static int memoryIncrease=0;

static void *myRealloc(void *p, int newsize, int memInc, int sizeofElem)
{
 if (p==NULL) { if (memInc) return malloc(memInc*sizeofElem); return malloc(sizeofElem); }
 if ((memInc==0)||((newsize%memInc)==0)) p=realloc(p,(newsize+memInc)*sizeofElem);
 //    if (!p)
 //    {
 //        printf("XMLParser Error: Not enough memory! Aborting.../n"); exit(220);
 //    }
 return p;
}

void XMLNode::addToOrder(int index, int type)
{
 int n=nElement();
 d->pOrder=(int*)myRealloc(d->pOrder,n+1,memoryIncrease*3,sizeof(int));
 d->pOrder[n]=(index<<2)+type;
}

// Add a child node to the given element.
XMLNode XMLNode::addChild_WOSD(XMLCSTR lpszName, int isDeclaration)
{
 if (!lpszName) return emptyXMLNode;
 int nc=d->nChild;
 d->pChild=(XMLNode*)myRealloc(d->pChild,(nc+1),memoryIncrease,sizeof(XMLNode));
 d->pChild[nc].d=NULL;
 d->pChild[nc]=XMLNode(d,lpszName,isDeclaration);
 addToOrder(nc,eNodeChild);
 d->nChild++;
 return d->pChild[nc];
}

// Add an attribute to an element.
XMLAttribute *XMLNode::addAttribute_WOSD(XMLCSTR lpszName, XMLCSTR lpszValuev)
{
 if (!lpszName) return &emptyXMLAttribute;
 int na=d->nAttribute;
 d->pAttribute=(XMLAttribute*)myRealloc(d->pAttribute,(na+1),memoryIncrease,sizeof(XMLAttribute));
 XMLAttribute *pAttr=d->pAttribute+na;
 pAttr->lpszName = lpszName;
 pAttr->lpszValue = lpszValuev;
 addToOrder(na,eNodeAttribute);
 d->nAttribute++;
 return pAttr;
}

// Add text to the element.
XMLCSTR XMLNode::addText_WOSD(XMLCSTR lpszValue)
{
 if (!lpszValue) return NULL;
 int nt=d->nText;
 d->pText=(XMLCSTR*)myRealloc(d->pText,(nt+1),memoryIncrease,sizeof(XMLSTR));
 d->pText[nt]=lpszValue;
 addToOrder(nt,eNodeText);
 d->nText++;
 return lpszValue;
}

// Add clear (unformatted) text to the element.
XMLClear *XMLNode::addClear_WOSD(XMLCSTR lpszValue, XMLCSTR lpszOpen, XMLCSTR lpszClose)
{
 if (!lpszValue) return &emptyXMLClear;
 int nc=d->nClear;
 d->pClear=(XMLClear *)myRealloc(d->pClear,(nc+1),memoryIncrease,sizeof(XMLClear));
 XMLClear *pNewClear=d->pClear+nc;
 pNewClear->lpszValue = lpszValue;
 pNewClear->lpszOpenTag = lpszOpen;
 pNewClear->lpszCloseTag = lpszClose;
 addToOrder(nc,eNodeClear);
 d->nClear++;
 return pNewClear;
}

// Trim the end of the text to remove white space characters.
static void FindEndOfText(XMLCSTR lpszToken, int *pcbText)
{
 XMLCHAR   ch;
 int     cbText;
 assert(lpszToken);
 assert(pcbText);
 cbText = (*pcbText)-1;
 while(TRUE)
 {
  assert(cbText >= 0);
  ch = lpszToken[cbText];
  if XML_isSPACECHAR(ch) cbText--;
  else { *pcbText = cbText+1; return; }
 }
}

// private:
// Parse a clear (unformatted) type node.
int XMLNode::ParseClearTag(void *px, void *pa)
{
 XML *pXML=(XML *)px;
 ALLXMLClearTag *pClear=(ALLXMLClearTag *)pa;
 int cbTemp = 0;
 XMLCSTR lpszTemp;
 XMLCSTR lpXML=&pXML->lpXML[pXML->nIndex];

 // Find the closing tag
 lpszTemp = _tcsstr(lpXML, pClear->lpszClose);

 // Iterate through the tokens until we find the closing tag.
 if (lpszTemp)
 {
  // Cache the size and increment the index
  cbTemp = (int)(lpszTemp - lpXML);

  pXML->nIndex += cbTemp+(int)_tcslen(pClear->lpszClose);

  // Add the clear node to the current element
  addClear_WOSD(stringDup(lpXML,cbTemp), pClear->lpszOpen, pClear->lpszClose);
  return TRUE;
 }

 // If we failed to find the end tag
 pXML->error = eXMLErrorUnmatchedEndClearTag;
 return FALSE;
}

void XMLNode::exactMemory(XMLNodeData *d)
{
 if (memoryIncrease<=1) return;
 if (d->pOrder)     d->pOrder=(int*)realloc(d->pOrder,(d->nChild+d->nAttribute+d->nText+d->nClear)*sizeof(int));
 if (d->pChild)     d->pChild=(XMLNode*)realloc(d->pChild,d->nChild*sizeof(XMLNode));
 if (d->pAttribute) d->pAttribute=(XMLAttribute*)realloc(d->pAttribute,d->nAttribute*sizeof(XMLAttribute));
 if (d->pText)      d->pText=(XMLCSTR*)realloc(d->pText,d->nText*sizeof(XMLSTR));
 if (d->pClear)     d->pClear=(XMLClear *)realloc(d->pClear,d->nClear*sizeof(XMLClear));
}

// private:
// Recursively parse an XML element.
int XMLNode::ParseXMLElement(void *pa)
{
 XML *pXML=(XML *)pa;
 int cbToken;
 enum XMLTokenTypeTag type;
 NextToken token;
 XMLCSTR lpszTemp=NULL;
 int cbTemp;
 int nDeclaration;
 XMLCSTR lpszText=NULL;
 XMLNode pNew;
 enum Status status; // inside or outside a tag
 enum Attrib attrib = eAttribName;

 assert(pXML);

 // If this is the first call to the function
 if (pXML->nFirst)
 {
  // Assume we are outside of a tag definition
  pXML->nFirst = FALSE;
  status = eOutsideTag;
 } else
 {
  // If this is not the first call then we should only be called when inside a tag.
  status = eInsideTag;
 }

 // Iterate through the tokens in the document
 while(TRUE)
 {
  // Obtain the next token
  token = GetNextToken(pXML, &cbToken, &type);

  if (type != eTokenError)
  {
   // Check the current status
   switch(status)
   {

    // If we are outside of a tag definition
   case eOutsideTag:

    // Check what type of token we obtained
    switch(type)
    {
     // If we have found text or quoted text
    case eTokenText:
    case eTokenQuotedText:
    case eTokenEquals:
     if (!lpszText)
     {
      lpszText = token.pStr;
     }

     break;

     // If we found a start tag '<' and declarations '<?'
    case eTokenTagStart:
    case eTokenDeclaration:

     // Cache whether this new element is a declaration or not
     nDeclaration = type == eTokenDeclaration;

     // If we have node text then add this to the element
     if (lpszText)
     {
      cbTemp = (int)(token.pStr - lpszText);
      FindEndOfText(lpszText, &cbTemp);
      lpszText=fromXMLString(lpszText,cbTemp,pXML);
      if (!lpszText) return FALSE;
      addText_WOSD(lpszText);
      lpszText=NULL;
     }

     // Find the name of the tag
     token = GetNextToken(pXML, &cbToken, &type);

     // Return an error if we couldn't obtain the next token or
     // it wasnt text
     if (type != eTokenText)
     {
      pXML->error = eXMLErrorMissingTagName;
      return FALSE;
     }

     // If we found a new element which is the same as this
     // element then we need to pass this back to the caller..

#ifdef APPROXIMATE_PARSING
     if (d->lpszName &&
      myTagCompare(d->lpszName, token.pStr) == 0)
     {
      // Indicate to the caller that it needs to create a
      // new element.
      pXML->lpNewElement = token.pStr;
      pXML->cbNewElement = cbToken;
      return TRUE;
     } else
#endif
     {
      // If the name of the new element differs from the name of
      // the current element we need to add the new element to
      // the current one and recurse
      pNew = addChild_WOSD(stringDup(token.pStr,cbToken), nDeclaration);

      while (!pNew.isEmpty())
      {
       // Callself to process the new node.  If we return
       // FALSE this means we dont have any more
       // processing to do...

       if (!pNew.ParseXMLElement(pXML)) return FALSE;
       else
       {
        // If the call to recurse this function
        // evented in a end tag specified in XML then
        // we need to unwind the calls to this
        // function until we find the appropriate node
        // (the element name and end tag name must
        // match)
        if (pXML->cbEndTag)
        {
         // If we are back at the root node then we
         // have an unmatched end tag
         if (!d->lpszName)
         {
          pXML->error=eXMLErrorUnmatchedEndTag;
          return FALSE;
         }

         // If the end tag matches the name of this
         // element then we only need to unwind
         // once more...

         if (myTagCompare(d->lpszName, pXML->lpEndTag)==0)
         {
          pXML->cbEndTag = 0;
         }

         return TRUE;
        } else
         if (pXML->cbNewElement)
         {
          // If the call indicated a new element is to
          // be created on THIS element.

          // If the name of this element matches the
          // name of the element we need to create
          // then we need to return to the caller
          // and let it process the element.

          if (myTagCompare(d->lpszName, pXML->lpNewElement)==0)
          {
           return TRUE;
          }

          // Add the new element and recurse
          pNew = addChild_WOSD(stringDup(pXML->lpNewElement,pXML->cbNewElement));
          pXML->cbNewElement = 0;
         }
         else
         {
          // If we didn't have a new element to create
          pNew = emptyXMLNode;

         }
       }
      }
     }
     break;

     // If we found an end tag
    case eTokenTagEnd:

     // If we have node text then add this to the element
     if (lpszText)
     {
      cbTemp = (int)(token.pStr - lpszText);
      FindEndOfText(lpszText, &cbTemp);
      lpszText=fromXMLString(lpszText,cbTemp,pXML);
      if (!lpszText) return FALSE;
      addText_WOSD(lpszText);
      lpszText = NULL;
     }

     // Find the name of the end tag
     token = GetNextToken(pXML, &cbTemp, &type);

     // The end tag should be text
     if (type != eTokenText)
     {
      pXML->error = eXMLErrorMissingEndTagName;
      return FALSE;
     }
     lpszTemp = token.pStr;

     // After the end tag we should find a closing tag
     token = GetNextToken(pXML, &cbToken, &type);
     if (type != eTokenCloseTag)
     {
      pXML->error = eXMLErrorMissingEndTagName;
      return FALSE;
     }

     // We need to return to the previous caller.  If the name
     // of the tag cannot be found we need to keep returning to
     // caller until we find a match
     if (myTagCompare(d->lpszName, lpszTemp) != 0)
#ifdef STRICT_PARSING
     {
      pXML->error=eXMLErrorUnmatchedEndTag;
      pXML->nIndexMissigEndTag=pXML->nIndex;
      return FALSE;
     }
#else
     {
      pXML->error=eXMLErrorMissingEndTag;
      pXML->nIndexMissigEndTag=pXML->nIndex;
      pXML->lpEndTag = lpszTemp;
      pXML->cbEndTag = cbTemp;
     }
#endif

     // Return to the caller
     exactMemory(d);
     return TRUE;

     // If we found a clear (unformatted) token
    case eTokenClear:
     // If we have node text then add this to the element
     if (lpszText)
     {
      cbTemp = (int)(token.pStr - lpszText);
      FindEndOfText(lpszText, &cbTemp);
      addText_WOSD(stringDup(lpszText,cbTemp));
      lpszText = NULL;
     }

     if (!ParseClearTag(pXML, token.pClr))
     {
      return FALSE;
     }
     break;

     // Errors...
    case eTokenCloseTag:          /* '>'         */
    case eTokenShortHandClose:    /* '/>'        */
     pXML->error = eXMLErrorUnexpectedToken;
     return FALSE;
    default:
     break;
    }
    break;

    // If we are inside a tag definition we need to search for attributes
   case eInsideTag:

    // Check what part of the attribute (name, equals, value) we
    // are looking for.
    switch(attrib)
    {
     // If we are looking for a new attribute
    case eAttribName:

     // Check what the current token type is
     switch(type)
     {
      // If the current type is text...
      // Eg.  'attribute'
     case eTokenText:
      // Cache the token then indicate that we are next to
      // look for the equals
      lpszTemp = token.pStr;
      cbTemp = cbToken;
      attrib = eAttribEquals;
      break;

      // If we found a closing tag...
      // Eg.  '>'
     case eTokenCloseTag:
      // We are now outside the tag
      status = eOutsideTag;
      break;

      // If we found a short hand '/>' closing tag then we can
      // return to the caller
     case eTokenShortHandClose:
      exactMemory(d);
      return TRUE;

      // Errors...
     case eTokenQuotedText:    /* '"SomeText"'   */
     case eTokenTagStart:      /* '<'            */
     case eTokenTagEnd:        /* '</'           */
     case eTokenEquals:        /* '='            */
     case eTokenDeclaration:   /* '<?'           */
     case eTokenClear:
      pXML->error = eXMLErrorUnexpectedToken;
      return FALSE;
     default: break;
     }
     break;

     // If we are looking for an equals
    case eAttribEquals:
     // Check what the current token type is
     switch(type)
     {
      // If the current type is text...
      // Eg.  'Attribute AnotherAttribute'
     case eTokenText:
      // Add the unvalued attribute to the list
      addAttribute_WOSD(stringDup(lpszTemp,cbTemp), NULL);
      // Cache the token then indicate.  We are next to
      // look for the equals attribute
      lpszTemp = token.pStr;
      cbTemp = cbToken;
      break;

      // If we found a closing tag 'Attribute >' or a short hand
      // closing tag 'Attribute />'
     case eTokenShortHandClose:
     case eTokenCloseTag:
      // If we are a declaration element '<?' then we need
      // to remove extra closing '?' if it exists
      if (d->isDeclaration &&
       (lpszTemp[cbTemp-1]) == _T('?'))
      {
       cbTemp--;
      }

      if (cbTemp)
      {
       // Add the unvalued attribute to the list
       addAttribute_WOSD(stringDup(lpszTemp,cbTemp), NULL);
      }

      // If this is the end of the tag then return to the caller
      if (type == eTokenShortHandClose)
      {
       exactMemory(d);
       return TRUE;
      }

      // We are now outside the tag
      status = eOutsideTag;
      break;

      // If we found the equals token...
      // Eg.  'Attribute ='
     case eTokenEquals:
      // Indicate that we next need to search for the value
      // for the attribute
      attrib = eAttribValue;
      break;

      // Errors...
     case eTokenQuotedText:    /* 'Attribute "InvalidAttr"'*/
     case eTokenTagStart:      /* 'Attribute <'            */
     case eTokenTagEnd:        /* 'Attribute </'           */
     case eTokenDeclaration:   /* 'Attribute <?'           */
     case eTokenClear:
      pXML->error = eXMLErrorUnexpectedToken;
      return FALSE;
     default: break;
     }
     break;

     // If we are looking for an attribute value
    case eAttribValue:
     // Check what the current token type is
     switch(type)
     {
      // If the current type is text or quoted text...
      // Eg.  'Attribute = "Value"' or 'Attribute = Value' or
      // 'Attribute = 'Value''.
     case eTokenText:
     case eTokenQuotedText:
      // If we are a declaration element '<?' then we need
      // to remove extra closing '?' if it exists
      if (d->isDeclaration &&
       (token.pStr[cbToken-1]) == _T('?'))
      {
       cbToken--;
      }

      if (cbTemp)
      {
       // Add the valued attribute to the list
       if (type==eTokenQuotedText) { token.pStr++; cbToken-=2; }
       XMLCSTR attrVal=token.pStr;
       if (attrVal)
       {
        attrVal=fromXMLString(attrVal,cbToken,pXML);
        if (!attrVal) return FALSE;
       }
       addAttribute_WOSD(stringDup(lpszTemp,cbTemp),attrVal);
      }

      // Indicate we are searching for a new attribute
      attrib = eAttribName;
      break;

      // Errors...
     case eTokenTagStart:        /* 'Attr = <'          */
     case eTokenTagEnd:          /* 'Attr = </'         */
     case eTokenCloseTag:        /* 'Attr = >'          */
     case eTokenShortHandClose:  /* "Attr = />"         */
     case eTokenEquals:          /* 'Attr = ='          */
     case eTokenDeclaration:     /* 'Attr = <?'         */
     case eTokenClear:
      pXML->error = eXMLErrorUnexpectedToken;
      return FALSE;
      break;
     default: break;
     }
    }
   }
  }
  // If we failed to obtain the next token
  else
  {
   return FALSE;
  }
 }
}

// Count the number of lines and columns in an XML string.
static void CountLinesAndColumns(XMLCSTR lpXML, int nUpto, XMLResults *pResults)
{
 XMLCHAR ch;
 assert(lpXML);
 assert(pResults);

 struct XML xml={ lpXML, 0, 0, eXMLErrorNone, NULL, 0, NULL, 0, TRUE };

 pResults->nLine = 1;
 pResults->nColumn = 1;
 while (xml.nIndex<nUpto)
 {
  ch = getNextChar(&xml);
  if (ch != _T('/n')) pResults->nColumn++;
  else
  {
   pResults->nLine++;
   pResults->nColumn=1;
  }
 }
}

// Parse XML and return the root element.
XMLNode XMLNode::parseString(XMLCSTR lpszXML, XMLCSTR tag, XMLResults *pResults)
{
 if (!lpszXML)
 {
  if (pResults)
  {
   pResults->error=eXMLErrorNoElements;
   pResults->nLine=0;
   pResults->nColumn=0;
  }
  return emptyXMLNode;
 }

 XMLNode xnode(NULL,NULL,FALSE);
 struct XML xml={ lpszXML, 0, 0, eXMLErrorNone, NULL, 0, NULL, 0, TRUE };

 // Create header element
 memoryIncrease=MEMORYINCREASE; xnode.ParseXMLElement(&xml); memoryIncrease=0;
 enum XMLError error = xml.error;
 if ((xnode.nChildNode()==1)&&(xnode.nElement()==1)) xnode=xnode.getChildNode(); // skip the empty node

 // If no error occurred
 if ((error==eXMLErrorNone)||(error==eXMLErrorMissingEndTag))
 {
  if (tag&&_tcslen(tag)&&_tcsicmp(xnode.getName(),tag))
  {
   XMLNode nodeTmp;
   int i=0;
   while (i<xnode.nChildNode())
   {
    nodeTmp=xnode.getChildNode(i);
    if (_tcsicmp(nodeTmp.getName(),tag)==0) break;
    if (nodeTmp.isDeclaration()) { xnode=nodeTmp; i=0; } else i++;
   }
   if (i>=xnode.nChildNode())
   {
    if (pResults)
    {
     pResults->error=eXMLErrorFirstTagNotFound;
     pResults->nLine=0;
     pResults->nColumn=0;
    }
    return emptyXMLNode;
   }
   xnode=nodeTmp;
  }
 } else
 {
  // Cleanup: this will destroy all the nodes
  xnode = emptyXMLNode;
 }


 // If we have been given somewhere to place results
 if (pResults)
 {
  pResults->error = error;

  // If we have an error
  if (error!=eXMLErrorNone)
  {
   if (error==eXMLErrorMissingEndTag) xml.nIndex=xml.nIndexMissigEndTag;
   // Find which line and column it starts on.
   CountLinesAndColumns(xml.lpXML, xml.nIndex, pResults);
  }
 }
 return xnode;
}

XMLNode XMLNode::parseFile(const char *filename, XMLCSTR tag, XMLResults *pResults)
{
 if (pResults) { pResults->nLine=0; pResults->nColumn=0; }
 FILE *f=fopen(filename,"rb");
 if (f==NULL) { if (pResults) pResults->error=eXMLErrorFileNotFound; return emptyXMLNode; }
 fseek(f,0,SEEK_END);
 int l=ftell(f),headerSz=0;
 if (!l) { if (pResults) pResults->error=eXMLErrorEmpty; return emptyXMLNode; }
 fseek(f,0,SEEK_SET);
 char *buf=(char*)malloc(l+1);
 fread(buf,l,1,f);
 fclose(f);
 buf[l]=0;
#ifdef _UNICODE
 if (guessUnicodeChars)
 {
  if (!myIsTextUnicode(buf,l))
  {
   XMLSTR b2=myMultiByteToWideChar(buf,l);
   free(buf); buf=( char*)b2;
  }
 }
 if (buf&&(((XMLSTR)buf)[0]==0xef)&&(((XMLSTR)buf)[1]==0xbb)&&(((XMLSTR)buf)[2]==0xbf)) headerSz=3*sizeof(XMLCHAR);
#else
 if (guessUnicodeChars)
 {
  if (myIsTextUnicode(buf,l))
  {
   l/=sizeof(wchar_t);
   char *b2=myWideCharToMultiByte((const wchar_t*)buf,l);
   free(buf); buf=(char*)b2;
  }
 }
 if (buf&&(((unsigned char*)buf)[0]==0xef)&&(((unsigned char*)buf)[1]==0xbb)&&(((unsigned char*)buf)[2]==0xbf)) headerSz=3;
#endif

 if (!buf) { if (pResults) pResults->error=eXMLErrorCharConversionError; return emptyXMLNode; }
 XMLNode x=parseString((XMLSTR)(buf+headerSz),tag,pResults);
 free(buf);
 return x;
}

XMLNodeContents XMLNode::enumContents(int i)
{
 XMLNodeContents c;
 if (!d) { c.type=eNodeNULL; return c; }
 c.type=(XMLElementType)(d->pOrder[i]&3);
 i=(d->pOrder[i])>>2;
 switch (c.type)
 {
 case eNodeChild:     c.child = d->pChild[i];      break;
 case eNodeAttribute: c.attrib= d->pAttribute[i];  break;
 case eNodeText:      c.text  = d->pText[i];       break;
 case eNodeClear:     c.clear = d->pClear[i];      break;
 default: break;
 }
 return c;
}

// private:
void *XMLNode::enumContent(XMLNodeData *pEntry, int i, XMLElementType *nodeType)
{
 XMLElementType j=(XMLElementType)(pEntry->pOrder[i]&3);
 *nodeType=j;
 i=(pEntry->pOrder[i])>>2;
 switch (j)
 {
 case eNodeChild:      return pEntry->pChild[i].d;
 case eNodeAttribute:  return pEntry->pAttribute+i;
 case eNodeText:       return (void*)(pEntry->pText[i]);
 case eNodeClear:      return pEntry->pClear+i;
 default: break;
 }
 return NULL;
}

// private:
int XMLNode::nElement(XMLNodeData *pEntry)
{
 return pEntry->nChild+pEntry->nText+pEntry->nClear+pEntry->nAttribute;
}

static inline void charmemset(XMLSTR dest,XMLCHAR c,int l) { while (l--) *(dest++)=c; }
// private:
// Creates an user friendly XML string from a given element with
// appropriate white space and carriage returns.
//
// This recurses through all subnodes then adds contents of the nodes to the
// string.
int XMLNode::CreateXMLStringR(XMLNodeData *pEntry, XMLSTR lpszMarker, int nFormat)
{
 int nResult = 0;
 int cb;
 int cbElement;
 int nIndex;
 int nChildFormat=-1;
 int bHasChildren=FALSE;
 int i;
 XMLAttribute * pAttr;

 assert(pEntry);

#define LENSTR(lpsz) (lpsz ? _tcslen(lpsz) : 0)

 // If the element has no name then assume this is the head node.
 cbElement = (int)LENSTR(pEntry->lpszName);

 if (cbElement)
 {
  // "<elementname "
  cb = nFormat == -1 ? 0 : nFormat;

  if (lpszMarker)
  {
   if (cb) charmemset(lpszMarker, INDENTCHAR, sizeof(XMLCHAR)*cb);
   nResult = cb;
   lpszMarker[nResult++]=_T('<');
   if (pEntry->isDeclaration) lpszMarker[nResult++]=_T('?');
   _tcscpy(&lpszMarker[nResult], pEntry->lpszName);
   nResult+=cbElement;
   lpszMarker[nResult++]=_T(' ');

  } else
  {
   nResult+=cbElement+2+cb;
   if (pEntry->isDeclaration) nResult++;
  }

  // Enumerate attributes and add them to the string
  nIndex = pEntry->nAttribute; pAttr=pEntry->pAttribute;
  for (i=0; i<nIndex; i++)
  {
   // "Attrib
   cb = (int)LENSTR(pAttr->lpszName);
   if (cb)
   {
    if (lpszMarker) _tcscpy(&lpszMarker[nResult], pAttr->lpszName);
    nResult += cb;
    // "Attrib=Value "
    if (pAttr->lpszValue)
    {
     cb=(int)lengthXMLString(pAttr->lpszValue);
     if (lpszMarker)
     {
      lpszMarker[nResult]=_T('=');
      lpszMarker[nResult+1]=_T('"');
      if (cb) toXMLString(&lpszMarker[nResult+2],pAttr->lpszValue);
      lpszMarker[nResult+cb+2]=_T('"');
     }
     nResult+=cb+3;
    }
    if (lpszMarker) lpszMarker[nResult] = _T(' ');
    nResult++;
   }
   pAttr++;
  }

  bHasChildren=(pEntry->nAttribute!=nElement(pEntry));
  if (pEntry->isDeclaration)
  {
   if (lpszMarker)
   {
    lpszMarker[nResult-1]=_T('?');
    lpszMarker[nResult]=_T('>');
   }
   nResult++;
   if (nFormat!=-1)
   {
    if (lpszMarker) lpszMarker[nResult]=_T('/n');
    nResult++;
   }
  } else
   // If there are child nodes we need to terminate the start tag
   if (bHasChildren)
   {
    if (lpszMarker) lpszMarker[nResult-1]=_T('>');
    if (nFormat!=-1)
    {
     if (lpszMarker) lpszMarker[nResult]=_T('/n');
     nResult++;
    }
   } else nResult--;
 }

 // Calculate the child format for when we recurse.  This is used to
 // determine the number of spaces used for prefixes.
 if (nFormat!=-1)
 {
  if (cbElement&&(!pEntry->isDeclaration)) nChildFormat=nFormat+1;
  else nChildFormat=nFormat;
 }

 // Enumerate through remaining children
 nIndex = nElement(pEntry);
 XMLElementType nodeType;
 void *pChild;
 for (i=0; i<nIndex; i++)
 {
  pChild=enumContent(pEntry, i, &nodeType);
  switch(nodeType)
  {
   // Text nodes
  case eNodeText:
   // "Text"
   cb = (int)lengthXMLString((XMLSTR)pChild);
   if (cb)
   {
    if (nFormat!=-1)
    {
     if (lpszMarker)
     {
      charmemset(&lpszMarker[nResult],INDENTCHAR,sizeof(XMLCHAR)*(nFormat + 1));
      toXMLString(&lpszMarker[nResult+nFormat+1],(XMLSTR)pChild);
      lpszMarker[nResult+nFormat+1+cb]=_T('/n');
     }
     nResult+=cb+nFormat+2;
    } else
    {
     if (lpszMarker) toXMLString(&lpszMarker[nResult], (XMLSTR)pChild);
     nResult += cb;
    }
   }
   break;


   // Clear type nodes
  case eNodeClear:
   // "OpenTag"
   cb = (int)LENSTR(((XMLClear*)pChild)->lpszOpenTag);
   if (cb)
   {
    if (nFormat!=-1)
    {
     if (lpszMarker)
     {
      charmemset(&lpszMarker[nResult], INDENTCHAR, sizeof(XMLCHAR)*(nFormat + 1));
      _tcscpy(&lpszMarker[nResult+nFormat+1], ((XMLClear*)pChild)->lpszOpenTag);
     }
     nResult+=cb+nFormat+1;
    }
    else
    {
     if (lpszMarker)_tcscpy(&lpszMarker[nResult], ((XMLClear*)pChild)->lpszOpenTag);
     nResult += cb;
    }
   }

   // "OpenTag Value"
   cb = (int)LENSTR(((XMLClear*)pChild)->lpszValue);
   if (cb)
   {
    if (lpszMarker) _tcscpy(&lpszMarker[nResult], ((XMLClear*)pChild)->lpszValue);
    nResult += cb;
   }

   // "OpenTag Value CloseTag"
   cb = (int)LENSTR(((XMLClear*)pChild)->lpszCloseTag);
   if (cb)
   {
    if (lpszMarker) _tcscpy(&lpszMarker[nResult], ((XMLClear*)pChild)->lpszCloseTag);
    nResult += cb;
   }

   if (nFormat!=-1)
   {
    if (lpszMarker) lpszMarker[nResult] = _T('/n');
    nResult++;
   }
   break;

   // Element nodes
  case eNodeChild:

   // Recursively add child nodes
   nResult += CreateXMLStringR((XMLNodeData*)pChild,
    lpszMarker ? lpszMarker + nResult : 0, nChildFormat);
   break;
  default: break;
  }
 }

 if ((cbElement)&&(!pEntry->isDeclaration))
 {
  // If we have child entries we need to use long XML notation for
  // closing the element - "<elementname>blah blah blah</elementname>"
  if (bHasChildren)
  {
   // "</elementname>/0"
   if (lpszMarker)
   {
    if (nFormat != -1)
    {
     if (nFormat)
     {
      charmemset(&lpszMarker[nResult], INDENTCHAR,sizeof(XMLCHAR)*nFormat);
      nResult+=nFormat;
     }
    }

    _tcscpy(&lpszMarker[nResult], _T("</"));
    nResult += 2;
    _tcscpy(&lpszMarker[nResult], pEntry->lpszName);
    nResult += cbElement;

    if (nFormat == -1)
    {
     _tcscpy(&lpszMarker[nResult], _T(">"));
     nResult++;
    } else
    {
     _tcscpy(&lpszMarker[nResult], _T(">/n"));
     nResult+=2;
    }
   } else
   {
    if (nFormat != -1) nResult+=cbElement+4+nFormat;
    else nResult+=cbElement+3;
   }
  } else
  {
   // If there are no children we can use shorthand XML notation -
   // "<elementname/>"
   // "/>/0"
   if (lpszMarker)
   {
    if (nFormat == -1)
    {
     _tcscpy(&lpszMarker[nResult], _T("/>"));
     nResult += 2;
    }
    else
    {
     _tcscpy(&lpszMarker[nResult], _T("/>/n"));
     nResult += 3;
    }
   }
   else
   {
    nResult += nFormat == -1 ? 2 : 3;
   }
  }
 }

 return nResult;
}

#undef LENSTR

// Create an XML string
// @param       int nFormat             - 0 if no formatting is required
//                                        otherwise nonzero for formatted text
//                                        with carriage returns and indentation.
// @param       int *pnSize             - [out] pointer to the size of the
//                                        returned string not including the
//                                        NULL terminator.
// @return      XMLSTR                  - Allocated XML string, you must free
//                                        this with free().
XMLSTR XMLNode::createXMLString(int nFormat, int *pnSize)
{
 if (!d) { if (pnSize) *pnSize=0; return NULL; }

 XMLSTR lpszResult = NULL;
 int cbStr;

 // Recursively Calculate the size of the XML string
 nFormat = nFormat ? 0 : -1;
 cbStr = CreateXMLStringR(d, 0, nFormat);
 assert(cbStr);
 // Alllocate memory for the XML string + the NULL terminator and
 // create the recursively XML string.
 lpszResult=(XMLSTR)malloc((cbStr+1)*sizeof(XMLCHAR));
 CreateXMLStringR(d, lpszResult, nFormat);
 if (pnSize) *pnSize = cbStr;
 return lpszResult;
}

XMLNode::~XMLNode() { destroyCurrentBuffer(d); }
void XMLNode::deleteNodeContent() { destroyCurrentBuffer(d); }

void XMLNode::detachFromParent(XMLNodeData *d)
{
 XMLNode *pa=d->pParent->pChild;
 int i=0;
 while (((void*)(pa[i].d))!=((void*)d)) i++;
 d->pParent->nChild--;
 if (d->pParent->nChild) memmove(pa+i,pa+i+1,(d->pParent->nChild-i)*sizeof(XMLNode));
 else { free(pa); d->pParent->pChild=NULL; }
 removeOrderElement(d->pParent,eNodeChild,i);
}
void XMLNode::destroyCurrentBuffer(XMLNodeData *d)
{
 if (!d) return;
 (d->ref_count) --;
 if (d->ref_count==0)
 {
  int i;
  if (d->pParent) detachFromParent(d);
  for(i=0; i<d->nChild; i++) { d->pChild[i].d->pParent=NULL; destroyCurrentBuffer(d->pChild[i].d); }
  free(d->pChild);
  for(i=0; i<d->nText; i++) free((void*)d->pText[i]);
  free(d->pText);
  for(i=0; i<d->nClear; i++) free((void*)d->pClear[i].lpszValue);
  free(d->pClear);
  for(i=0; i<d->nAttribute; i++)
  {
   free((void*)d->pAttribute[i].lpszName);
   if (d->pAttribute[i].lpszValue) free((void*)d->pAttribute[i].lpszValue);
  }
  free(d->pAttribute);
  free(d->pOrder);
  free((void*)d->lpszName);
  free(d);
  d=NULL;
 }
}

XMLNode XMLNode::addChild(XMLNode childNode)
{
 XMLNodeData *dc=childNode.d;
 if ((!dc)||(!d)) return childNode;
 if (dc->pParent) detachFromParent(dc); else dc->ref_count++;
 dc->pParent=d; dc->isDeclaration=0;
 int nc=d->nChild;
 d->pChild=(XMLNode*)myRealloc(d->pChild,(nc+1),memoryIncrease,sizeof(XMLNode));
 d->pChild[nc].d=dc;
 addToOrder(nc,eNodeChild);
 d->nChild++;
 return childNode;
}

void XMLNode::deleteAttribute(int i)
{
 if ((!d)||(i>=d->nAttribute)) return;
 d->nAttribute--;
 XMLAttribute *p=d->pAttribute+i;
 free((void*)p->lpszName);
 if (p->lpszValue) free((void*)p->lpszValue);
 if (d->nAttribute) memmove(p,p+1,(d->nAttribute-i)*sizeof(XMLAttribute)); else { free(p); d->pAttribute=NULL; }
 removeOrderElement(d,eNodeAttribute,i);
}

void XMLNode::deleteAttribute(XMLAttribute *a){ if (a) deleteAttribute(a->lpszName); }
void XMLNode::deleteAttribute(XMLCSTR lpszName)
{
 int j=0;
 getAttribute(lpszName,&j);
 if (j) deleteAttribute(j-1);
}

XMLAttribute *XMLNode::updateAttribute_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,int i)
{
 if (!d) return NULL;
 if (i>=d->nAttribute)
 {
  if (lpszNewName) return addAttribute_WOSD(lpszNewName,lpszNewValue);
  return NULL;
 }
 XMLAttribute *p=d->pAttribute+i;
 if (p->lpszValue&&p->lpszValue!=lpszNewValue) free((void*)p->lpszValue);
 p->lpszValue=lpszNewValue;
 if (lpszNewName&&p->lpszName!=lpszNewName) { free((void*)p->lpszName); p->lpszName=lpszNewName; };
 return p;
}

XMLAttribute *XMLNode::updateAttribute_WOSD(XMLAttribute *newAttribute, XMLAttribute *oldAttribute)
{
 if (oldAttribute) return updateAttribute_WOSD(newAttribute->lpszValue,newAttribute->lpszName,oldAttribute->lpszName);
 return NULL;
}

XMLAttribute *XMLNode::updateAttribute_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName)
{
 int j=0;
 getAttribute(lpszOldName,&j);
 if (j) return updateAttribute_WOSD(lpszNewValue,lpszNewName,j-1);
 else
 {
  if (lpszNewName) return addAttribute_WOSD(lpszNewName,lpszNewValue);
  else             return addAttribute_WOSD(stringDup(lpszOldName),lpszNewValue);
 }
}

void XMLNode::deleteText(int i)
{
 if ((!d)||(i>=d->nText)) return;
 d->nText--;
 XMLCSTR *p=d->pText+i;
 free((void*)*p);
 if (d->nText) memmove(p,p+1,(d->nText-i)*sizeof(XMLCSTR)); else { free(p); d->pText=NULL; }
 removeOrderElement(d,eNodeText,i);
}

void XMLNode::deleteText(XMLCSTR lpszValue)
{
 if (!d) return;
 int i,l=d->nText;
 XMLCSTR *p=d->pText;
 for (i=0; i<l; i++) if (lpszValue==p[i]) { deleteText(i); return; }
}

XMLCSTR XMLNode::updateText_WOSD(XMLCSTR lpszNewValue, int i)
{
 if (!d) return NULL;
 if (i>=d->nText) return addText_WOSD(lpszNewValue);
 XMLCSTR *p=d->pText+i;
 if (*p!=lpszNewValue) { free((void*)*p); *p=lpszNewValue; }
 return lpszNewValue;
}

XMLCSTR XMLNode::updateText_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue)
{
 if (!d) return NULL;
 int i,l=d->nText;
 XMLCSTR *p=d->pText;
 for (i=0; i<l; i++) if (lpszOldValue==p[i]) return updateText_WOSD(lpszNewValue,i);
 return addText_WOSD(lpszNewValue);
}

void XMLNode::deleteClear(int i)
{
 if ((!d)||(i>=d->nClear)) return;
 d->nClear--;
 XMLClear *p=d->pClear+i;
 free((void*)p->lpszValue);
 if (d->nClear) memmove(p,p+1,(d->nText-i)*sizeof(XMLClear)); else { free(p); d->pClear=NULL; }
 removeOrderElement(d,eNodeClear,i);
}

void XMLNode::deleteClear(XMLCSTR lpszValue)
{
 if (!d) return;
 int i,l=d->nClear;
 XMLClear *p=d->pClear;
 for (i=0; i<l; i++) if (lpszValue==p[i].lpszValue) { deleteText(i); return; }
}

void XMLNode::deleteClear(XMLClear *a) { if (a) deleteClear(a->lpszValue); }

XMLClear *XMLNode::updateClear_WOSD(XMLCSTR lpszNewContent, int i)
{
 if (!d) return NULL;
 if (i>=d->nClear)
 {
  return addClear_WOSD(XMLClearTags[0].lpszOpen,lpszNewContent,XMLClearTags[0].lpszClose);
 }
 XMLClear *p=d->pClear+i;
 if (lpszNewContent!=p->lpszValue) { free((void*)p->lpszValue); p->lpszValue=lpszNewContent; }
 return p;
}

XMLClear *XMLNode::updateClear_WOSD(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue)
{
 if (!d) return NULL;
 int i,l=d->nClear;
 XMLClear *p=d->pClear;
 for (i=0; i<l; i++) if (lpszOldValue==p[i].lpszValue) return updateClear_WOSD(lpszNewValue,i);
 return addClear_WOSD(lpszNewValue,XMLClearTags[0].lpszOpen,XMLClearTags[0].lpszClose);
}

XMLClear *XMLNode::updateClear_WOSD(XMLClear *newP,XMLClear *oldP)
{
 if (oldP) return updateClear_WOSD(newP->lpszValue,oldP->lpszValue);
 return NULL;
}

XMLNode& XMLNode::operator=( const XMLNode& A )
{
 // shallow copy
 if (this != &A)
 {
  destroyCurrentBuffer(d);
  d=A.d;
  if (d) (d->ref_count) ++ ;
 }
 return *this;
}

XMLNode::XMLNode(const XMLNode &A)
{
 // shallow copy
 d=A.d;
 if (d) (d->ref_count)++ ;
}

int XMLNode::nChildNode(XMLCSTR name)
{
 if (!d) return 0;
 int i,j=0,n=d->nChild;
 XMLNode *pc=d->pChild;
 for (i=0; i<n; i++)
 {
  if (_tcsicmp(pc->d->lpszName, name)==0) j++;
  pc++;
 }
 return j;
}

XMLNode XMLNode::getChildNode(XMLCSTR name, int *j)
{
 if (!d) return emptyXMLNode;
 int i=0,n=d->nChild;
 if (j) i=*j;
 XMLNode *pc=d->pChild+i;
 for (; i<n; i++)
 {
  if (_tcsicmp(pc->d->lpszName, name)==0)
  {
   if (j) *j=i+1;
   return *pc;
  }
  pc++;
 }
 return emptyXMLNode;
}

XMLNode XMLNode::getChildNode(XMLCSTR name, int j)
{
 if (!d) return emptyXMLNode;
 int i=0;
 while (j-->0) getChildNode(name,&i);
 return getChildNode(name,&i);
}

XMLNode XMLNode::getChildNodeWithAttribute(XMLCSTR name,XMLCSTR attributeName,XMLCSTR attributeValue, int *k)
{
 int i=0,j;
 if (k) i=*k;
 XMLNode x;
 XMLCSTR t;
 do
 {
  x=getChildNode(name,&i);
  if (!x.isEmpty())
  {
   if (attributeValue)
   {
    j=0;
    do
    {
     t=x.getAttribute(attributeName,&j);
     if (t&&(_tcsicmp(attributeValue,t)==0)) { if (k) *k=i+1; return x; }
    } while (t);
   } else
   {
    if (x.isAttributeSet(attributeName)) { if (k) *k=i+1; return x; }
   }
  }
 } while (!x.isEmpty());
 return emptyXMLNode;
}

// Find an attribute on an node.
XMLCSTR XMLNode::getAttribute(XMLCSTR lpszAttrib, int *j)
{
 if (!d) return NULL;
 int i=0,n=d->nAttribute;
 if (j) i=*j;
 XMLAttribute *pAttr=d->pAttribute+i;
 for (; i<n; i++)
 {
  if (_tcsicmp(pAttr->lpszName, lpszAttrib)==0)
  {
   if (j) *j=i+1;
   return pAttr->lpszValue;
  }
  pAttr++;
 }
 return NULL;
}

char XMLNode::isAttributeSet(XMLCSTR lpszAttrib)
{
 if (!d) return FALSE;
 int i,n=d->nAttribute;
 XMLAttribute *pAttr=d->pAttribute;
 for (i=0; i<n; i++)
 {
  if (_tcsicmp(pAttr->lpszName, lpszAttrib)==0)
  {
   return TRUE;
  }
  pAttr++;
 }
 return FALSE;
}

XMLCSTR XMLNode::getAttribute(XMLCSTR name, int j)
{
 if (!d) return NULL;
 int i=0;
 while (j-->0) getAttribute(name,&i);
 return getAttribute(name,&i);
}

XMLCSTR XMLNode::getName(){ if (!d) return NULL; return d->lpszName;   }
int XMLNode::nText()      { if (!d) return 0;    return d->nText;      }
int XMLNode::nChildNode() { if (!d) return 0;    return d->nChild;     }
int XMLNode::nAttribute() { if (!d) return 0;    return d->nAttribute; }
int XMLNode::nClear()     { if (!d) return 0;    return d->nClear;     }
XMLClear     XMLNode::getClear         (int i) { if ((!d)||(i>=d->nClear    )) return emptyXMLClear;     return d->pClear[i];     }
XMLAttribute XMLNode::getAttribute     (int i) { if ((!d)||(i>=d->nAttribute)) return emptyXMLAttribute; return d->pAttribute[i]; }
XMLCSTR      XMLNode::getAttributeName (int i) { if ((!d)||(i>=d->nAttribute)) return NULL;              return d->pAttribute[i].lpszName;  }
XMLCSTR      XMLNode::getAttributeValue(int i) { if ((!d)||(i>=d->nAttribute)) return NULL;              return d->pAttribute[i].lpszValue; }
XMLCSTR      XMLNode::getText          (int i) { if ((!d)||(i>=d->nText     )) return NULL;              return d->pText[i];      }
XMLNode      XMLNode::getChildNode     (int i) { if ((!d)||(i>=d->nChild    )) return emptyXMLNode;      return d->pChild[i];     }
char         XMLNode::isDeclaration    (     ) { if (!d) return 0;             return d->isDeclaration; }
char         XMLNode::isEmpty          (     ) { return (d==NULL); }
int          XMLNode::nElement         (     ) { if (!d) return 0; return d->nChild+d->nText+d->nClear+d->nAttribute; }

XMLNode       XMLNode::addChild(XMLCSTR lpszName, int isDeclaration)
{ return addChild_WOSD(stringDup(lpszName),isDeclaration); }
XMLAttribute *XMLNode::addAttribute(XMLCSTR lpszName, XMLCSTR lpszValue)
{ return addAttribute_WOSD(stringDup(lpszName),stringDup(lpszValue)); }
XMLCSTR       XMLNode::addText(XMLCSTR lpszValue)
{ return addText_WOSD(stringDup(lpszValue)); }
XMLClear     *XMLNode::addClear(XMLCSTR lpszValue, XMLCSTR lpszOpen, XMLCSTR lpszClose)
{ return addClear_WOSD(stringDup(lpszValue),lpszOpen,lpszClose); }
XMLCSTR       XMLNode::updateName(XMLCSTR lpszName)
{ return updateName_WOSD(stringDup(lpszName)); }
XMLAttribute *XMLNode::updateAttribute(XMLAttribute *newAttribute, XMLAttribute *oldAttribute)
{ return updateAttribute_WOSD(stringDup(newAttribute->lpszValue),stringDup(newAttribute->lpszName),oldAttribute->lpszName); }
XMLAttribute *XMLNode::updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,int i)
{ return updateAttribute_WOSD(stringDup(lpszNewValue),stringDup(lpszNewName),i); }
XMLAttribute *XMLNode::updateAttribute(XMLCSTR lpszNewValue, XMLCSTR lpszNewName,XMLCSTR lpszOldName)
{ return updateAttribute_WOSD(stringDup(lpszNewValue),stringDup(lpszNewName),lpszOldName); }
XMLCSTR       XMLNode::updateText(XMLCSTR lpszNewValue, int i)
{ return updateText_WOSD(stringDup(lpszNewValue),i); }
XMLCSTR       XMLNode::updateText(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue)
{ return updateText_WOSD(stringDup(lpszNewValue),lpszOldValue); }
XMLClear     *XMLNode::updateClear(XMLCSTR lpszNewContent, int i)
{ return updateClear_WOSD(stringDup(lpszNewContent),i); }
XMLClear     *XMLNode::updateClear(XMLCSTR lpszNewValue, XMLCSTR lpszOldValue)
{ return updateClear_WOSD(stringDup(lpszNewValue),lpszOldValue); }
XMLClear     *XMLNode::updateClear(XMLClear *newP,XMLClear *oldP)
{ return updateClear_WOSD(stringDup(newP->lpszValue),oldP->lpszValue); }

void XMLNode::setGlobalOptions(char _guessUnicodeChars, char strictUTF8Parsing)
{
 guessUnicodeChars=_guessUnicodeChars;
#ifndef _UNICODE
 if (strictUTF8Parsing) XML_ByteTable=XML_utf8ByteTable; else XML_ByteTable=XML_asciiByteTable;
#endif
}

char XMLNode::guessUTF8ParsingParameterValue(void *buf,int l, char useXMLEncodingAttribute)
{
#ifdef _UNICODE
 return 0;
#else
 if (l<25) return 0;
 if (myIsTextUnicode(buf,l)) return 0;
 unsigned char *b=(unsigned char*)buf;
 if ((b[0]==0xef)&&(b[1]==0xbb)&&(b[2]==0xbf)) return 1;

 // Match utf-8 model ?
 int i=0;
 while (i<l)
  switch (XML_utf8ByteTable[b[i]])
 {
  case 4: i++; if ((i<l)&&(b[i]& 0xC0)!=0x80) return 0; // 10bbbbbb ?
  case 3: i++; if ((i<l)&&(b[i]& 0xC0)!=0x80) return 0; // 10bbbbbb ?
  case 2: i++; if ((i<l)&&(b[i]& 0xC0)!=0x80) return 0; // 10bbbbbb ?
  case 1: i++; break;
  case 0: i=l;
 }
 if (!useXMLEncodingAttribute) return 1;
 // if encoding is specified and different from utf-8 than it's non-utf8
 // otherwise it's utf-8
 char bb[201];
 l=mmin(l,200);
 memcpy(bb,buf,l); // copy buf into bb to be able to do "bb[l]=0"
 bb[l]=0;
 b=(unsigned char*)strstr(bb,"encoding");
 if (!b) return 1;
 b+=8;
 while XML_isSPACECHAR(*b) b++;
 if (*b!='=') return 1;
 b++;
 while XML_isSPACECHAR(*b) b++;
 if ((*b!='/'')&&(*b!='"')) return 1;
 b++;
 while XML_isSPACECHAR(*b) b++;
 if ((_strnicmp((char*)b,"utf-8",5)==0)||
  (_strnicmp((char*)b,"utf8",4)==0)) return 1;
 return 0;
#endif
}
#undef XML_isSPACECHAR

//////////////////////////////////////////////////////////
//      Here starts the base64 conversion functions.    //
//////////////////////////////////////////////////////////

static const char base64Fillchar = _T('='); // used to mark partial words at the end

// this lookup table defines the base64 encoding
XMLCSTR base64EncodeTable=_T("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/");

// Decode Table gives the index of any valid base64 character in the Base64 table]
// 96: '='  -   97: space char   -   98: illegal char   -   99: end of string
const unsigned char base64DecodeTable[] = {
 99,98,98,98,98,98,98,98,98,97,  97,98,98,97,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  //00 -29
  98,98,97,98,98,98,98,98,98,98,  98,98,98,62,98,98,98,63,52,53,  54,55,56,57,58,59,60,61,98,98,  //30 -59
  98,96,98,98,98, 0, 1, 2, 3, 4,   5, 6, 7, 8, 9,10,11,12,13,14,  15,16,17,18,19,20,21,22,23,24,  //60 -89
  25,98,98,98,98,98,98,26,27,28,  29,30,31,32,33,34,35,36,37,38,  39,40,41,42,43,44,45,46,47,48,  //90 -119
  49,50,51,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  //120 -149
  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  //150 -179
  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  //180 -209
  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98,98,98,98,98,  //210 -239
  98,98,98,98,98,98,98,98,98,98,  98,98,98,98,98,98                                               //240 -255
};

XMLSTR base64Encode(char *inbuf, unsigned int inlen, char formatted, unsigned int *outlen)
{
 if (!inlen) return stringDup(_T(""));
 unsigned int i=((inlen-1)/3*4+4+1),j,k,eLen=inlen/3;
 if (formatted) { i+=eLen/18; k=17; }
 if (outlen) *outlen=i;
 XMLSTR ret=(XMLSTR)malloc(i*sizeof(XMLCHAR));
 XMLSTR curr=ret;
 for(i=0;i<eLen;i++)
 {
  // Copy next three bytes into lower 24 bits of int, paying attention to sign.
  j=(inbuf[0]<<16)|(inbuf[1]<<8)|inbuf[2]; inbuf+=3;
  // Encode the int into four chars
  *(curr++)=base64EncodeTable[ j>>18      ];
  *(curr++)=base64EncodeTable[(j>>12)&0x3f];
  *(curr++)=base64EncodeTable[(j>> 6)&0x3f];
  *(curr++)=base64EncodeTable[(j    )&0x3f];
  if (formatted) { if (!k) { *(curr++)=_T('/n'); k=18; } k--; }
 }
 eLen=inlen-eLen*3; // 0 - 2.
 if (eLen==1)
 {
  *(curr++)=base64EncodeTable[ inbuf[0]>>2      ];
  *(curr++)=base64EncodeTable[(inbuf[0]<<4)&0x3F];
  *(curr++)=base64Fillchar;
  *(curr++)=base64Fillchar;
 } else if (eLen==2)
 {
  j=(inbuf[0]<<8)|inbuf[1];
  *(curr++)=base64EncodeTable[ j>>10      ];
  *(curr++)=base64EncodeTable[(j>> 4)&0x3f];
  *(curr++)=base64EncodeTable[(j<< 2)&0x3f];
  *(curr++)=base64Fillchar;
 }
 *(curr++)=0;
 return ret;
}

unsigned int base64DecodeSize(XMLCSTR data,XMLError *xe)
{
 if (xe) *xe=eXMLErrorNone;
 int size=0;
 unsigned char c;
 //skip any extra characters (e.g. newlines or spaces)
 while (*data)
 {
#ifdef _UNICODE
  if (*data>255) { if (xe) *xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
#endif
  c=base64DecodeTable[(unsigned char)(*data)];
  if (c<97) size++;
  else if (c==98) { if (xe) *xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
  data++;
 }
 if (xe&&(size%4!=0)) *xe=eXMLErrorBase64DataSizeIsNotMultipleOf4;
 if (size==0) return 0;
 do { data--; size--; } while(*data==base64Fillchar); size++;
 return (unsigned int)((size*3)/4);
}

char base64Decode(XMLCSTR data, char *buf, unsigned int len, XMLError *xe)
{
 if (xe) *xe=eXMLErrorNone;
 int i=0,p=0;
 unsigned char d,c;
 for(;;)
 {

#ifdef _UNICODE
#define BASE64DECODE_READ_NEXT_CHAR(c)                                              /
 do {                                                                        /
 if (data[i]>255){ c=98; break; }                                        /
 c=base64DecodeTable[(unsigned char)data[i++]];                       /
 }while (c==97);                                                             /
 if(c==98){ if(xe)*xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
#else
#define BASE64DECODE_READ_NEXT_CHAR(c)                                           /
 do { c=base64DecodeTable[(unsigned char)data[i++]]; }while (c==97);   /
 if(c==98){ if(xe)*xe=eXMLErrorBase64DecodeIllegalCharacter; return 0; }
#endif

  BASE64DECODE_READ_NEXT_CHAR(c)
   if (c==99) { return 2; }
   if (c==96)
   {
    if (p==(int)len) return 2;
    if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;
    return 1;
   }

   BASE64DECODE_READ_NEXT_CHAR(d)
    if ((d==99)||(d==96)) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;  return 1; }
    if (p==(int)len) {      if (xe) *xe=eXMLErrorBase64DecodeBufferTooSmall; return 0; }
    buf[p++]=(c<<2)|((d>>4)&0x3);

    BASE64DECODE_READ_NEXT_CHAR(c)
     if (c==99) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;  return 1; }
     if (p==(int)len)
     {
      if (c==96) return 2;
      if (xe) *xe=eXMLErrorBase64DecodeBufferTooSmall;
      return 0;
     }
     if (c==96) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;  return 1; }
     buf[p++]=((d<<4)&0xf0)|((c>>2)&0xf);

     BASE64DECODE_READ_NEXT_CHAR(d)
      if (d==99 ) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;  return 1; }
      if (p==(int)len)
      {
       if (d==96) return 2;
       if (xe) *xe=eXMLErrorBase64DecodeBufferTooSmall;
       return 0;
      }
      if (d==96) { if (xe) *xe=eXMLErrorBase64DecodeTruncatedData;  return 1; }
      buf[p++]=((c<<6)&0xc0)|d;
 }
}
#undef BASE64DECODE_READ_NEXT_CHAR

char *base64Decode(XMLCSTR data,unsigned int *outlen, XMLError *xe)
{
 if (xe) *xe=eXMLErrorNone;
 unsigned int len=base64DecodeSize(data,xe);
 if (outlen) *outlen=len;
 if (!len) return NULL;
 char *buf=(char*)malloc(len+1);
 if(!base64Decode(data,buf,len,xe)){free(buf);return NULL;}
 return buf;
}

 

main.cpp

/////////////////////////

 string t_xml = xml;

 XMLNode head   = XMLNode::parseString(t_xml.c_str(), NULL);
 XMLNode result , node;
 result = head.getChildNode("boolean");
 if (result.isEmpty())
 {
  printf("not exist");
 }
 else
 {
  string ret = result.getText();
  printf("exist:%s/n",ret.c_str());
 }

原创粉丝点击