STL容器大汇总

来源:互联网 发布:广元广电网络客服电话 编辑:程序博客网 时间:2024/05/17 04:59

STL容器vector,list,deque的比较
 

 

作者:斑鸠
更新时间:2009/01/04
编译器版本:Microsoft (R) 32-bit C/C++ Optimizing Compiler Version 15.00.21022.08 for 80x86

C++的STL模板库中提供了3种容器类:vector,list,deque
对于这三种容器,在觉得好用的同时,经常会让我们困惑应该选择哪一种来实现我们的逻辑。
在少量数据操作的程序中随便哪一种用起来感觉差别并不是很大,
但是当数据达到一定数量后,会明显感觉性能上有很大差异。

本文就试图从介绍,以及性能比较两个方面来讨论这个问题。

 

  1. vector - 会自动增长的数组
  2. list - 擅长插入删除的链表
  3. deque - 拥有vector和list两者优点的双端队列
  4. 性能竞技场
  5. 性能总结与使用建议
  6. 测试程序清单

vector - 会自动增长的数组

vector又称为向量数组,他是为了解决程序中定义的数组是
不能动态改变大小这个缺点而出现的。
一般程序实现是在类创建的时候同时创建一个定长数组,
随着数据不断被写入,一旦数组被填满,则重新开辟一块更大的内存区,
把原有的数据复制到新的内存区,抛弃原有的内存,如此反复。

由于程序自动管理数组的增长,对于我们程序员来说确实轻松了不少,
只管把数据往里面插就行了,当然把物理内存和虚拟内存插爆掉了
就是操作系统来找你麻烦了:-)

vector由于数组的增长只能向前,所以也只提供了后端插入和后端删除,
也就是push_back和pop_back。当然在前端和中间要操作数据也是可以的,
用insert和erase,但是前端和中间对数据进行操作必然会引起数据块的移动,
这对性能影响是非常大的。

对于所有数组来说,最大的优势就是随机访问的能力。
vector中,提供了at和[]运算符这两个方法来进行随机访问。
由于每个数据大小相同,并且无间隔地排列在内存中,
所以要对某一个数据操作,只需要用一个表达式就能直接计算出地址:
address = base + index * datasize

同样,对vector进行内存开辟,初始化,清除都是不需要花大力气的,
从头到尾都只有一块内存。

list - 擅长插入删除的链表

有黑必有白,世界万物都是成对出现的。
链表对于数组来说就是相反的存在。
数组本身是没有动态增长能力的(程序中也必须重新开辟内存来实现),
而链表强悍的就是动态增长和删除的能力。
但对于数组强悍的随机访问能力来说的话,链表却很弱。

list是一个双向链表的实现。
为了提供双向遍历的能力,list要比一般的数据单元多出两个指向前后的指针。
这也是没办法的,毕竟现在的PC内存结构就是一个大数组,
链表要在不同的环境中实现自己的功能就需要花更多空间。

list提供了push_back,push_front,pop_back,pop_front四个方法
来方便操作list的两端数据的增加和删除,不过少了vector的at和[]运算符的
随机访问数据的方法。并不是不能实现,而是list的设计者
并不想让list去做那些事情,因为他们会做得非常差劲。

对于list来说,清除容器内所有的元素是一件苦力活,
因为所有数据单元的内存都不连续,list只有一个一个遍历来删除。

deque - 拥有vector和list两者优点的双端队列

黑与白,处于这两个极端之间的就是令人愉悦的彩色了。
deque作为vector和list的结合体,确实有着不凡的实力。

STL的deque的实现没有怎么去看过,不过根据我自己的猜测,
应该是把数组分段化,在分段的数组上添加指针来把所有段连在一起,
最终成为一个大的数组。

deque和list一样,提供了push_back,push_front,
pop_back,pop_front四个方法。可以想象,如果要对deque的两端进行操作,
也就是要对第一段和最后一段的定长数组进行重新分配内存区,
由于分过段的数组很小,重新分配的开销也就不会很大。

deque也和vector一样,提供了at和[]运算符的方法。
要计算出某个数据的地址的话,虽然要比vector麻烦一点,
但效率要比list高多了。
首先和list一样进行遍历,每次遍历的时候累积每段数组的大小,
当遍历到某个段,而且baseN <= index < baseN + baseN_length的时候,
通过address = baseN + baseN_index就能计算出地址
由于分过段的后链表的长度也不是很长,所以遍历对于
整体性能的影响就微乎其微了。

看起来deque很无敌吧,不过deque和希腊神话的阿吉里斯一样,
再怎么强大也是有自己的弱点的,之后的测试数据中就能看到了。


 

性能竞技场

为了能更好地进行比较,我们让静态数组(程序中写死的)和
动态数组(程序中new出来的)也参加了部分竞技。

竞技项目:
  • 初始化:对于静态和动态数组,逐一赋值,对于容器,push_back插入
  • 前向遍历:从0到n-1,每个数据自加1
  • 后向遍历:从n-1到0,每个数据自减1
  • 随机访问:在0到n-1中,随机抽取一定数量的数据进行读取
  • 后端插入:用push_back在后端插入一定数量的数据
  • 后端移除:用pop_back在后端移除一定数量的数据
  • 前端插入:用push_front在前端插入一定数量的数据
  • 前端移除:用pop_front在前端移除一定数量的数据
  • 中间插入:用insert在中间插入一定数量的数据
  • 中间移除:用erase在中间移除一定数量的数据
  • 反初始化:对于静态和动态数组,ZeroMemory删除所有数据,对于容器,调用clear方法
规则:
  • vector,list,deque都调用默认的构造函数来创建
  • 数组和容器的数据项都是1,000,000个
  • 前端和后端插入的数据项是10,000个
  • 前端和后端删除的数据项是10,000个
  • 随机访问的数据项是10,000个
  • 数据类型采用int型
  • 计时采用RDTSC高精度计时器来计时
  • 随机访问的数据的位置序列在测试前随机生成,所有数组和容器都采用这个序列
  • 测试采用Debug版(Release版会对代码进行优化,可能会对测试产生一定的影响)
  • 测试3次,取平均值
测试机配置:
Intel(R) Core(TM)2 CPU T7400 2.16GHz 2.16GHz
2.00GB内存

测试结果:(单位 秒)
测试项目静态数组动态数组vectorlistdeque备注 初始化0.005510.004610.2071.300.352list每个数据项都有附加数据,速度稍慢了一些前向遍历0.003810.005490.07960.07560.0713 后向遍历0.004220.004780.8850.8790.690 随机访问0.0003340.0003420.001191480.0115list把时间都耗在了找寻相应数据上后端插入N/AN/A0.001920.01280.00260 后端移除N/AN/A0.001310.02930.00194 前端插入N/AN/A10.20.01280.00547vector对前端操作很苦手啊前端移除N/AN/A10.30.02970.00135同上中间插入N/AN/A195187764看似万能的deque的最大弱点,因为复杂的结构导致中间数据操作带来的复杂性大大增加,体现在操作时间是其他两个的几倍中间移除N/AN/A195209753同上反初始化0.001390.002900.00001060.6930.305vector貌似是直接抛弃内存的,其他两个就没那么简单了

 

性能总结与使用建议

测试项目静态数组动态数组vectorlistdeque 初始化★★★★★★★★★★★★★★☆★★★☆☆★★★★☆前向遍历★★★★★★★★★★★★★★☆★★★★☆★★★★☆后向遍历★★★★★★★★★★★★★★☆★★★★☆★★★★☆随机访问★★★★★★★★★★★★★★☆★☆☆☆☆★★★☆☆后端插入N/AN/A★★★★★★★★★☆★★★★★后端移除N/AN/A★★★★★★★★★☆★★★★★前端插入N/AN/A★★☆☆☆★★★★☆★★★★★前端移除N/AN/A★★☆☆☆★★★★☆★★★★★中间插入N/AN/A★★☆☆☆★★☆☆☆★☆☆☆☆中间移除N/AN/A★★☆☆☆★★☆☆☆★☆☆☆☆反初始化★★★★★★★★★★★★★★★★★★★☆★★★★☆

一些使用上的建议:
Level 1 - 仅仅作为Map使用:采用静态数组
Level 2 - 保存定长数据,使用时也是全部遍历:采用动态数组(长度一开始就固定的话静态数组也行)
Level 3 - 保存不定长数组,需要动态增加的能力,侧重于寻找数据的速度:采用vector
Level 3 - 保存不定长数组,需要动态增加的能力,侧重于增加删除数据的速度:采用list
Level 4 - 对数据有复杂操作,即需要前后增删数据的能力,又要良好的数据访问速度:采用deque
Level 5 - 对数据中间的增删操作比较多:采用list,建议在排序的基础上,批量进行增删可以对运行效率提供最大的保证
Level 6 - 上述中找不到适合的:组合STL容器或者自己建立特殊的数据结构来实现


为什么需要hash_map 用过map吧?map提供一个很常用的功能,那就是提供key-value的存储和查找功能。
例如,我要记录一个人名和相应的存储,而且随时增加,要快速查找和修改:
岳不群-华山派掌门人,人称君子剑
张三丰-武当掌门人,太极拳创始人
东方不败-第一高手,葵花宝典 ...
这些信息如果保存下来并不复杂,但是找起来比较麻烦。例如我要找"张三丰"的信息,最傻的方法就是取得所有的记录,然后按照名字一个一个比较。如果要速度快,就需要把这些记录按照字母顺序排列,然后按照二分法查找。但是增加记录的时候同时需要保持记录有序,因此需要插入排序。考虑到效率,这就需要用到二叉树。讲下去会没完没了,如果你使用STL的map容器,你可以非常方便的实现这个功能,而不用关心其细节。关于map的数据结构细节,感兴趣的朋友可以参看学习STL map, STL set之数据结构基础。看看map的实现:
#include <map>
#include <string>
using namespace std;
...
map<string, string> namemap; //增加。。。
namemap["岳不群"]="华山派掌门人,人称君子剑";
namemap["张三丰"]="武当掌门人,太极拳创始人";
namemap["东方不败"]="第一高手,葵花宝典"; ... //查找。。
if(namemap.find("岳不群") != namemap.end()){ ... }
不觉得用起来很easy吗?而且效率很高,100万条记录,最多也只要20次的string.compare的比较,就能找到你要找的记录;200万条记录事,也只要用21次的比较。速度永远都满足不了现实的需求。如果有100万条记录,我需要频繁进行搜索时,20次比较也会成为瓶颈,要是能降到一次或者两次比较是否有可能?而且当记录数到200万的时候也是一次或者两次的比较,是否有可能?而且还需要和map一样的方便使用。答案是肯定的。这时你需要hash_map. 虽然hash_map目前并没有纳入C++标准模板库中,但几乎每个版本的STL都提供了相应的实现。而且应用十分广泛。在正式使用hash_map之前,先看看hash_map的原理。
1 数据结构:hash_map原理
这是一节让你深入理解hash_map的介绍,如果你只是想囫囵吞枣,不想理解其原理,你倒是可以略过这一节,但我还是建议你看看,多了解一些没有坏处。 hash_map基于hash table(哈希表)。 哈希表最大的优点,就是把数据的存储和查找消耗的时间大大降低,几乎可以看成是常数时间;而代价仅仅是消耗比较多的内存。然而在当前可利用内存越来越多的情况下,用空间换时间的做法是值得的。另外,编码比较容易也是它的特点之一。其基本原理是:使用一个下标范围比较大的数组来存储元素。可以设计一个函数(哈希函数,也叫做散列函数),使得每个元素的关键字都与一个函数值(即数组下标,hash值)相对应,于是用这个数组单元来存储这个元素;也可以简单的理解为,按照关键字为每一个元素“分类”,然后将这个元素存储在相应“类”所对应的地方,称为桶。但是,不能够保证每个元素的关键字与函数值是一一对应的,因此极有可能出现对于不同的元素,却计算出了相同的函数值,这样就产生了“冲突”,换句话说,就是把不同的元素分在了相同的“类”之中。总的来说,“直接定址”与“解决冲突”是哈希表的两大特点。hash_map,首先分配一大片内存,形成许多桶。是利用hash函数,对key进行映射到不同区域(桶)进行保存。其插入过程是:得到key通过hash函数得到hash值得到桶号(一般都为hash值对桶数求模)存放key和value在桶内。其取值过程是:得到key通过hash函数得到hash值得到桶号(一般都为hash值对桶数求模)比较桶的内部元素是否与key相等,若都不相等,则没有找到。取出相等的记录的value。 hash_map中直接地址用hash函数生成,解决冲突,用比较函数解决。这里可以看出,如果每个桶内部只有一个元素,那么查找的时候只有一次比较。当许多桶内没有值时,许多查询就会更快了(指查不到的时候). 由此可见,要实现哈希表,和用户相关的是:hash函数和比较函数。这两个参数刚好是我们在使用hash_map时需要指定的参数。
2 hash_map 使用 2.1 一个简单实例
不要着急如何把"岳不群"用hash_map表示,我们先看一个简单的例子:随机给你一个ID号和ID号相应的信息,ID号的范围是1~2的31次方。如何快速保存查找。
#include <hash_map>
#include <string>
using namespace std;
int main(){
hash_map<int, string> mymap;
mymap[9527]="唐伯虎点秋香";
mymap[1000000]="百万富翁的生活";
mymap[10000]="白领的工资底线"; ...
if(mymap.find(10000) != mymap.end()){ ... }
够简单,和map使用方法一样。这时你或许会问?hash函数和比较函数呢?不是要指定么?你说对了,但是在你没有指定hash函数和比较函数的时候,你会有一个缺省的函数,看看hash_map的声明,你会更加明白。下面是SGI STL的声明:
template <class _Key, class _Tp, class _HashFcn = hash<_Key>, class _EqualKey = equal_to<_Key>, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) > class hash_map { ... }
也就是说,在上例中,有以下等同关系:
... hash_map<int, string> mymap;
//等同于: hash_map<int, string, hash<int>, equal_to<int> > mymap;
Alloc我们就不要取关注太多了(希望深入了解Allocator的朋友可以参看标准库 STL :Allocator能做什么)
2.2 hash_map 的hash函数 hash< int>到底是什么样子?
看看源码: struct hash<int> { size_t operator()(int __x) const { return __x; } };
原来是个函数对象。在SGI STL中,提供了以下hash函数:
struct hash<char*>
struct hash<const char*>
struct hash<char>
struct hash<unsigned char>
struct hash<signed char>
struct hash<short>
struct hash<unsigned short>
struct hash<int>
struct hash<unsigned int>
struct hash<long>
struct hash<unsigned long>
也就是说,如果你的key使用的是以上类型中的一种,你都可以使用缺省的hash函数。当然你自己也可以定义自己的hash函数。对于自定义变量,你只能如此,例如对于string,就必须自定义hash函数。
例如:
struct str_hash{
size_t operator()(const string& str) const {
unsigned long __h = 0; for (size_t i = 0 ; i < str.size() ; i ++) __h = 5*__h + str[i];
return size_t(__h);
}
};
//如果你希望利用系统定义的字符串hash函数,你可以这样写:
struct str_hash{
size_t operator()(const string& str) const {
return return __stl_hash_string(str.c_str());
}
};

在声明自己的哈希函数时要注意以下几点:
使用struct,然后重载operator().返回是size_t 参数是你要hash的key的类型。函数是const类型的。如果这些比较难记,最简单的方法就是照猫画虎,找一个函数改改就是了。
现在可以对开头的"岳不群"进行哈希化了.直接替换成下面的声明即可:map<string, string> namemap;//改为: hash_map<string, string, str_hash> namemap;
其他用法都不用边。
当然不要忘了吧str_hash的声明以及头文件改为hash_map。
你或许会问:比较函数呢?别着急,这里就开始介绍hash_map中的比较函数。

2.3 hash_map 的比较函数
在map中的比较函数,需要提供less函数。如果没有提供,缺省的也是less<Key>。在hash_map中,要比较桶内的数据和key是否相等,因此需要的是是否等于的函数:equal_to<Key>。先看看equal_to的源码://本代码可以从SGI STL //先看看binary_function函数声明,其实只是定义一些类型而已。
template <class _Arg1, class _Arg2, class _Result> struct binary_function {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
}; //看看equal_to的定义:
template <class _Tp> struct equal_to : public binary_function<_Tp,_Tp,bool>{
bool operator()(const _Tp& __x, const _Tp& __y) const {
return __x == __y;
}
};

如果你使用一个自定义的数据类型,如struct mystruct, 或者const char* 的字符串,如何使用比较函数?使用比较函数,有两种方法. 第一种是:重载==操作符,利用equal_to;看看下面的例子:
struct mystruct{
int iID;
int len;
bool operator==(const mystruct & my) const{
return (iID==my.iID) && (len==my.len) ;
}
};
这样,就可以使用equal_to< mystruct>作为比较函数了。另一种方法就是使用函数对象。自定义一个比较函数体:
struct compare_str{
bool operator()(const char* p1, const char*p2) const{
return strcmp(p1,p2)==0;
}
};
有了compare_str,就可以使用hash_map了。
typedef hash_map<const char*, string, hash<const char*>, compare_str> StrIntMap;
StrIntMap namemap;
namemap["岳不群"]="华山派掌门人,人称君子剑";
namemap["张三丰"]="武当掌门人,太极拳创始人";
namemap["东方不败"]="第一高手,葵花宝典";
2.4 hash_map 函数 hash_map的函数和map的函数差不多。具体函数的参数和解释,请参看:STL 编程手册:Hash_map,这里主要介绍几个常用函数。 hash_map(size_type n) 如果讲究效率,这个参数是必须要设置的。n 主要用来设置hash_map 容器中hash桶的个数。桶个数越多,hash函数发生冲突的概率就越小,重新申请内存的概率就越小。n越大,效率越高,但是内存消耗也越大。 const_iterator find(const key_type& k) const. 用查找,输入为键值,返回为迭代器。 data_type& operator[](const key_type& k) . 这是我最常用的一个函数。因为其特别方便,可像使用数组一样使用。不过需要注意的是,当你使用[key ]操作符时,如果容器中没有key元素,这就相当于自动增加了一个key元素。因此当你只是想知道容器中是否有key元素时,你可以使用find。如果你希望插入该元素时,你可以直接使用[]操作符。 insert 函数。在容器中不包含key值时,insert函数和[]操作符的功能差不多。但是当容器中元素越来越多,每个桶中的元素会增加,为了保证效率,hash_map会自动申请更大的内存,以生成更多的桶。因此在insert以后,以前的iterator有可能是不可用的。 erase 函数。在insert的过程中,当每个桶的元素太多时,hash_map可能会自动扩充容器的内存。但在sgi stl中是erase并不自动回收内存。因此你调用erase后,其他元素的iterator还是可用的。
3 相关hash容器
hash 容器除了hash_map之外,还有hash_set, hash_multimap, has_multiset, 这些容器使用起来和set, multimap, multiset的区别与hash_map和map的区别一样,我想不需要我一一细说了吧。
4 其他 这里列几个常见问题,应该对你理解和使用hash_map比较有帮助。
4.1 hash_map和map的区别在哪里? 构造函数。hash_map需要hash函数,等于函数;map只需要比较函数(小于函数). 存储结构。hash_map采用hash表存储,map一般采用红黑树(RB Tree)实现。因此其memory数据结构是不一样的。
4.2 什么时候需要用hash_map,什么时候需要用map? 总体来说,hash_map 查找速度会比map快,而且查找速度基本和数据数据量大小,属于常数级别;而map的查找速度是log(n)级别。并不一定常数就比log(n)小,hash还有hash函数的耗时,明白了吧,如果你考虑效率,特别是在元素达到一定数量级时,考虑考虑hash_map。但若你对内存使用特别严格,希望程序尽可能少消耗内存,那么一定要小心,hash_map可能会让你陷入尴尬,特别是当你的hash_map对象特别多时,你就更无法控制了,而且hash_map的构造速度较慢。现在知道如何选择了吗?权衡三个因素: 查找速度, 数据量, 内存使用。 这里还有个关于hash_map和map的小故事,看看:http://dev.csdn.net/Develop/article/14/14019.shtm
4.3 如何在hash_map中加入自己定义的类型? 你只要做两件事, 定义hash函数,定义等于比较函数。下面的代码是一个例子: -bash-2.05b$ cat my.cpp
#include <hash_map>
#include <string>
#include <iostream>
using namespace std; //define the class
class ClassA{
public:
ClassA(int a):c_a(a){}
int getvalue()const { return c_a;}
void setvalue(int a){c_a;}
private:
int c_a;
}; //1 define the hash function
struct hash_A{
size_t operator()(const class ClassA & A)const{ //return hash<int>(classA.getvalue());
return A.getvalue();
}
}; //2 define the equal function
struct equal_A{
bool operator()(const class ClassA & a1, const class ClassA & a2)const{
return a1.getvalue() == a2.getvalue();
}
};
int main() {
hash_map<ClassA, string, hash_A, equal_A> hmap;
ClassA a1(12);
hmap[a1]="I am 12";
ClassA a2(198877);
hmap[a2]="I am 198877";
cout<<hmap[a1]<<endl;
cout<<hmap[a2]<<endl;
return 0;
}

原创粉丝点击