背包问题学习笔记

来源:互联网 发布:中国纺织品进出口数据 编辑:程序博客网 时间:2024/05/27 01:12

本文摘自路径,学习路过收集起来 已被后续复习方便,非常感谢原作者

http://www.cnblogs.com/jillzhang/archive/2007/10/06/915035.html

1.引子

  我们人类是一种贪婪的动物,如果给您一个容量一定的背包和一些大小不一的物品,裝到背包里面的物品就归您,遇到这种好事大家一定不会错过,用力塞不一定是最好的办法,用脑子才行,下面就教您如何解决这样的问题,以获得更多的奖品。

2.应用场景

  在一个物品向量中找到一个子集满足条件如下 :

   1)这个子集加起来的体积大小不能大于指定阀值

   2)   这个物品子集加起来价值大小是向量V中所有满足条件1的子集中最大的

3.分析

   背包问题有好多版本,本文只研究0/1版本,即对一个物体要么选用,要么就抛弃,不能将一个物体再继续细分的情况。这种问题最简单的方法就是找出这个向量的所有子集,如同找出幂集中的子集一样,但这种遍历的方法恐怕并不会被聪明的我们所使用,现在举办这些活动的电视台也非常聪明,他们不但要求您能将物品装进去,而且指定操作时间,这样当您慢慢腾腾的装进去倒出来的时候,时间恐怕早就到了,最终您可能一无所获,这可不是我们希望的结果,我们需要使用一些策略:第一次我们可以从大小小于背包容量的物品中随意挑取一个,这样可以尽量争取时间,选取第一个后的每一个我们希望其都是最优的,这样能节省一定的时间。假设有这么一组物品,其大小和价值如下表所示:

物品编号大小价值121234343456568

给我们一个容量为12的背包,让我们装上面这些物品,我们可以用下面的方法来解决寻找最优组合的问题

建立一个二围数组,数组包括n个行(n为物品数量)和capcity+1列

首先我们对第一个物品进行取舍,因为物品1大小为2,先将物品1加入背包,物品1的大小为2,则cap>=2的时候能容纳item1,这时候背包里面物品的价值为item1.Value=1,得到以下数组

01234567891011120011111111111

接下来处理物品1和物品2的子集,item2的大小为3,则只有cap=3的时候才能容纳item2,当cap=3的时候讲好能容纳item2,此时背包里面价值item2.value=4,且剩余空间为0,当cap=4的时候,能容纳item2,且剩余空间为1,不能容item1,当cap=5的时候,可以容纳item1+item2,此时的价值为1+4 =5,得到第二行

01234567891011120014455555555

下面分析物品三,物品二,物品一的子集,物品三的大小为4,当cap=4的时候就能容纳item3,但此时背包里面的价值为3,明显小于上一行中的cap=4的价值(3<4),所以cap=4时不能将item3放进去,所以第三行的4位置应该和第二行的4位置一致,当cap=5的时候能够容纳item3,且剩余空间为1,和cap=4情况一样,拷贝上一行同一位置的值,当cap=6,放置item3后剩余2,能容item1和item4,二者的总价值:1+3=4<5,故拷贝上一行同位置的值,cap=7的时候,能容item2+item3,总价值大小为7,大于>5,故cap=8的时的值为7,cap=9的时候仍能容难item3+item2,value=7,cap=8的时候,能容纳item1+item2+item3,且总价值大小为8,大于上一行同位置的值,故cap>=9时候,总价值大小为8,第三行:

01234567891011120014455778888

按照这样的逻辑可以得到下面两列,最后二围数组是

0,0,1,1,1,1,1,1,1,1,1,1,1

0,0,1,4,4,5,5,5,5,5,5,5,5

0,0,1,4,4,5,5,7,7,8,8,8,8

0,0,1,4,4,6,6,7,10,10,11,11,13

0,0,1,4,4,6,8,8,10,12,12,14,14

得到这样的数组之后,我们需要作的是根据这个二围数组来产生最优物品子集,方法为

从第len行开始,比较最后一行cap索引位置的值是否大于上一行同一位置的值,如先比较第五行位置12的值(14)与第四行位置12的值(13),因为14!=13,所以item5放置到最优集合中,item5的大小为6,故比较第四行cap-6=6的位置上的值与上一行同一位置上值得大小,因为6!= 5,所以item4能放置到最优集合,下一步要比较的位置cap = 6-item4.Size=6-5=1,第三行位置1与第二行位置1相同,故item3不能放置到最优集合,第二行和第一行第一个位置上的值也一样,所以item2也不能放置进去,最后判断item1是否应该在最优集合,item5+item4后,剩余空间为1,不能容纳item1,故最优集合为{item4,item5};

综合上面的分析,我们可以得到这样的一个处理流程

1) 首先建立一个nx(cap+1)的二围数组

2) 第一行从尝试选择第一个物品开始

3) 对于以后的行,对于每个容量1<=cap<=capacity,首先拷贝上一行同一位置的值下来,如果itemi.Size<=cap并且上一行(cap-itemi.Size)位置上的值与itemi.Value的 和(tempMax)大于拷贝下来的值的话,就将拷贝下来的值替换为上一行(cap-itemi.Size)位置上的值与itemi.Value的 和(tempMax)

4) 得到完整数组之后,我们既可以根据数组来确定最优集合了,首先从最后一样最后位置开始,和上一行的同一位置进行比较,如果相同,则该行对应索引的物品不能放到背包中,否则放到背包,并且开始比较上一行与 上上一行在当前背包剩余空间索引出的值,如不等,则对应物品可放置,如此,直到处理到第二行和第一行的比对完成,然后根据当前背包剩余容量与第一个物品的大小比对来确定物品一是否能放置到背包中

4. 源程序
   /Files/jillzhang/Knapsack.rar

5. 结论

   上文采用的是动态编程的方法来处理此类背包问题,上面的文章中兄弟们也提到了用递归算法时间复杂度的问题,认为递归算法效率比较低下,这种疑问无可厚非,但递归算法也有它的优点,很多问题都能用递归来解决,我目前学习的就是用这种算法来解决一些常见问题,对于其他算法,比如此问题也可以采用贪婪算法,遗传算法等得以更好的解决,但本文暂不作讨论,以后有时间,一定将这些算法加以实现并详细比较其优劣。

6. 上几篇文章索引

1.算法:【一列数的规则如下: 1、1、2、3、5、8、13、21、34 ,求第30位数是多少, 用递归算法实现。(C#语言)】

2.大牛生小牛的问题

3.递归算法学习系列一(分而治之策略)

4. 递归算法学习系列二(归并排序)

5.递归算法学习系列之三(快速排序)

6.递归算法学习系列之寻找第K大

-------------------------------------------------------
下面是另一段关于01 背包问题的讲解,文中描述了一个 上面算法减少空间负责度的算法的伪代码

 

 

P01: 01背包问题

题目

有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度

以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N    for v=V..0        f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight)    for v=V..cost        f[v]=max{f[v],f[v-cost]+weight}

注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N    ZeroOnePack(c[i],w[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。

一个常数优化

前面的伪代码中有 for v=V..1,可以将这个循环的下限进行改进。

由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的

for i=1..N    for v=V..0

可以改成

for i=1..n    bound=max{V-sum{w[i..n]},c[i]}    for v=V..bound

这对于V比较大时是有用的。

小结

01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。

原创粉丝点击