对内存地址的认识

来源:互联网 发布:cad2015for mac汉化包 编辑:程序博客网 时间:2024/04/28 17:50

引用:http://wenda.tianya.cn/wenda/thread?tid=6c1da3e7f5ce0216



存储地址空间是指对存储器编码(编码地址)的范围。所谓编码就是对每一个物理存储单元(一个字节)分配一个号码,通常叫作编址。分配一个号码给一个存储单元的目的是为了便于找到它,完成数据的读写,这就是所谓的寻址(所以,有人也把地址空间称为寻址空间)。
  地址空间的大小和物理存储器的大小并不一定相等。举个例子来说明这个问题:某层楼共有17个房间,其编号为801817。这17个房间是物理的,而其地址空间采用了三位编码,其范围是800899100个地址,可见地址空间是大于实际房间数量的。
  对于386以上档次的微机,其地址总线为32位,因此地址空间可达232次方,4GB。(虽然如此,但是我们一般使用的一些操作系统例如windows xp、却最多只能识别或者使用3.25G的内存,64位的操作系统能识别并使用4G4G以上的的内存,
  好了,现在可以解释为什么会产生诸如:常规内存、保留内存、上位内存、高端内存、扩充内存和扩展内存等不同内存类型。
[
编辑本段]
【内存概念】
  各种内存概念
  这里需要明确的是,我们讨论的不同内存的概念是建立在寻址空间上的。
  
IBM
推出的第一台PC机采用的CPU8088芯片,它只有20根地址线,也就是说,它的地址空间是1MB
   PC机的设计师将1MB中的低端640KB用作RAM,供DOS及应用程序使用,高端的384KB则保留给ROM、视频适配卡等系统使用。从此,这个界 限便被确定了下来并且沿用至今。低端的640KB就被称为常规内存即PC机的基本RAM区。保留内存中的低128KB是显示缓冲区,高64KB是系统 BIOS(基本输入/输出系统)空间,其余192KB空间留用。从对应的物理存储器来看,基本内存区只使用了512KB芯片,占用00007FFFF 512KB地址。显示内存区虽有128KB空间,但对单色显示器(MDA卡)只需4KB就足够了,因此只安装4KB的物理存储器芯片,占用了B0000 B0FFF 4KB的空间,如果使用彩色显示器(CGA卡)需要安装16KB的物理存储器,占用B8000BBFFF16KB的空间,可见实际使用的地址范围都小 于允许使用的地址空间。
  在当时(1980年末至1981年初)这么容量的内存对PC机使用者来说似乎已经足够了,但是随着程序的不断增大,图象和声音的不断丰富,以及能访问更大内存空间的新型CPU相继出现,最初的PC机和MSDOS设计的局限性变得越来越明显。
  ●1.什么是扩充内存?
   到1984年,即286被普遍接受不久,人们越来越认识到640KB的限制已成为大型程序的障碍,这时,IntelLotus,这两家硬、软件的杰出代表,联手制定了一个由硬件和软件相结合的方案,此方法使所有PC机存取640KB以上RAM成为可能。而Microsoft刚推出Windows不久, 对内存空间的要求也很高,因此它也及时加入了该行列。
  在1985年初,LotusIntelMicrosoft三家共同定义了 LIMEMS,即扩充内存规范,通常称EMS为扩充内存。当时,EMS需要一个安装在IO槽口的内存扩充卡和一个称为EMS的扩充内存管理程序方可使 用。但是IO插槽的地址线只有24位(ISA总线),这对于386以上档次的32位机是不能适应的。所以,现在已很少使用内存扩充卡。现在微机中的扩充 内存通常是用软件如DOS中的EMM386把扩展内存模拟或扩充内存来使用。所以,扩充内存和扩展内存的区别并不在于其物理存储器的位置,而在于使用什么 方法来读写它。下面将作进一步介绍。
  前面已经说过扩充存储器也可以由扩展存储器模拟转换而成。EMS的原理和XMS不同,它采用了页帧方式。 页帧是在1MB空间中指定一块64KB空间(通常在保留内存区内,但其物理存储器来自扩展存储器),分为4页,每页16KBEMS存储器也按 16KB分页,每次可交换4页内容,以此方式可访问全部EMS存储器。符合EMS的驱动程序很多,常用的有EMM386.EXEQEMM TurboEMS386MAX等。DOSWindows中都提供了EMM386.EXE
  ●2.什么是扩展内存?
  我们知道,28624位地址线,它可寻址16MB的地址空间,而38632位地址线,它可寻址高达4GB的地址空间,为了区别起见,我们把1MB以上的地址空间称为扩展内存XMSeXtend memory)。
   在386以上档次的微机中,有两种存储器工作方式,一种称为实地址方式或实方式,另一种称为保护方式。在实方式下,物理地址仍使用20位,所以最大寻址 空间为1MB,以便与8086兼容。保护方式采用32位物理地址,寻址范围可达4GBDOS系统在实方式下工作,它管理的内存空间仍为1MB,因此它不 能直接使用扩展存储器。为此,LotusIntelASTMicrosoft公司建立了 MSDOS下扩展内存的使用标准,即扩展内存规范XMS。我们常在Config.sys文件中看到的Himem.sys就是管理扩展内存的驱动程序。
  扩展内存管理规范的出现迟于扩充内存管理规范。
  ●3.什么是高端内存区?
  在实方式下,内存单元的地址可记为:
  段地址:段内偏移
   通常用十六进制写为XXXXXXXX。实际的物理地址由段地址左移4位再和段内偏移相加而成。若地址各位均为1时,即为FFFFFFFF。其实际物理地址为:FFF0FFFF=10FFEF,约为1088KB(少16字节),这已超过 1MB范围进入扩展内存了。这个进入扩展内存的区域约为64KB,是1MB以上空间的第一个64KB。我们把它称为高端内存区HMAHigh Memory Area)。HMA的物理存储器是由扩展存储器取得的。因此要使用HMA,必须要有物理的扩展存储器存在。此外HMA的建立和使用还需要XMS驱动程序 HIMEM.SYS的支持,因此只有装入了HIMEM.SYS之后才能使用HMA
  ●4.什么是上位内存?
  为了解释上位内存的概 念,我们还得回过头看看保留内存区。保留内存区是指 640KB1024KB(共384KB)区域。这部分区域在PC诞生之初就明确是保留给系统使用的,用户程序无法插足。但这部分空间并没有充分使用,因 此大家都想对剩余的部分打主意,分一块地址空间(注意:是地址空间,而不是物理存储器)来使用。于是就得到了又一块内存区域UMB
  UMBUpper Memory Blocks)称为上位内存或上位内存块。它是由挤占保留内存中剩余未用的空间而产生的,它的物理存储器仍然取自物理的扩展存储器,它的管理驱动程序是EMS驱动程序。
  ●5.什么是SHADOW(影子)内存?
   对于细心的读者,可能还会发现一个问题:即是对于装有1MB1MB以上物理存储器的机器,其 640KB1024KB这部分物理存储器如何使用的问题。由于这部分地址空间已分配为系统使用,所以不能再重复使用。为了利用这部分物理存储器,在某些 386系统中,提供了一个重定位功能,即把这部分物理存储器的地址重定位为1024KB1408KB。这样,这部分物理存储器就变成了扩展存储器,当然 可以使用了。但这种重定位功能在当今高档机器中不再使用,而把这部分物理存储器保留作为Shadow存储器。Shadow存储器可以占据的地址空间与对应 ROM是相同的。ShadowRAM组成,其速度大大高于ROM。当把ROM中的内容(各种BIOS程序)装入相同地址的Shadow RAM中,就可以从RAM中访问BIOS,而不必再访问ROM。这样将大大提高系统性能。因此在设置CMOS参数时,应将相应的Shadow区设为允许使 用(Enabled)。
  ●6、什么是奇/偶校验?
  奇/偶校验(ECC)是数据传送时采用的一种校正数据错误的一种方式,分为奇校验和偶校验两种。
   如果是采用奇校验,在传送每一个字节的时候另外附加一位作为校验位,当实际数据中“1”的个数为偶数的时候,这个校验位就是“1”,否则这个校验位就是 “0”,这样就可以保证传送数据满足奇校验的要求。在接收方收到数据时,将按照奇校验的要求检测数据中“1”的个数,如果是奇数,表示传送正确,否则表示 传送错误。
  同理偶校验的过程和奇校验的过程一样,只是检测数据中“1”的个数为偶数。
  ●1.什么是CL延迟?
  CL 应时间是衡定内存的另一个标志。CLCAS Latency的缩写,指的是内存存取数据所需的延迟时间,简单的说,就是内存接到CPU的指令后的反应速度。一般的参数值是23两种。数字越小,代表反应所需的时间越短。在早期的PC133内存标准中,这个数值规定为3,而在Intel重新制订的新规范中,强制要求CL的反应时间必须为2,这样在一定 程度上,对于内存厂商的芯片及PCB的组装工艺要求相对较高,同时也保证了更优秀的品质。因此在选购品牌内存时,这是一个不可不察的因素。
  还有另的诠释:内存延迟基本上可以解释成是系统进入数据进行存取操作就绪状态前等待内存响应的时间。
   打个形象的比喻,就像你在餐馆里用餐的过程一样。你首先要点菜,然后就等待服务员给你上菜。同样的道理,内存延迟时间设置的越短,电脑从内存中读取数据的速度也就越快,进而电脑其他的性能也就越高。这条规则双双适用于基于英特尔以及AMD处理器的系统中。由于没有比2-2-2-5更低的延迟,因此国际内 存标准组织认为以现在的动态内存技术还无法实现0或者1的延迟。
  通常情况下,我们用4个连着的阿拉伯数字来表示一个内存延迟,例如 2-2-2-5。其中,第一个数字最为重要,它表示的是CAS Latency,也就是内存存取数据所需的延迟时间。第二个数字表示的是RAS-CAS延迟,接下来的两个数字分别表示的是RAS预充电时间和Act- to-Precharge延迟。而第四个数字一般而言是它们中间最大的一个。
  总结
  经过上面分析,内存储器的划分可归纳如下:
  基本内存 占据0640KB地址空间。
  保留内存 占据640KB1024KB地址空间。分配给显示缓冲存储器、各适配卡上的ROM和系统ROM BIOS,剩余空间可作上位内存UMBUMB的物理存储器取自物理扩展存储器。此范围的物理RAM可作为Shadow RAM使用。
  上位内存(UMB 利用保留内存中未分配使用的地址空间建立,其物理存储器由物理扩展存储器取得。UMBEMS管理,其大小可由EMS驱动程序设定。
  高端内存(HMA 扩展内存中的第一个64KB区域(1024KB1088KB)。由HIMEM.SYS建立和管理。
  ●XMS内存 符合XMS规范管理的扩展内存区。其驱动程序为HIMEM.SYS
  ●EMS内存 符合EMS规范管理的扩充内存区。其驱动程序为EMM386.EXE等。
  内存:随机存储器(RAM),主要存储正在运行的程序和要处理的数据。
[
编辑本段]
【内存频率】
   内存主频和CPU主频一样,习惯上被用来表示内存的速度,它代表着该内存所能达到的最高工作频率。内存主频是以MHz(兆赫)为单位来计量的。内存主频 越高在一定程度上代表着内存所能达到的速度越快。内存主频决定着该内存最高能在什么样的频率正常工作。目前较为主流的内存频率是800MHzDDR2 存,以及一些内存频率更高的DDR3内存。
  大家知道,计算机系统的时钟速度是以频率来衡量的。晶体振荡器控制着时钟速度,在石英晶片上加上电压,其就以正弦波的形式震动起来,这一震动可以通过晶片的形变和大小记录下来。晶体的震动以正弦调和变化的电流的形式表现出来,这一变化的电流就是时钟信号。而内存本身并不具备晶体振荡器,因此内存工作时的时钟信号是由主板芯片组的北桥或直接由主板的时钟发生器提供的,也就是说内存无法决定自身的工作频率,其实际工作频率是由主板来决定的。
  DDR内存和DDR2内存的频率可以用工作频率和等效频率两种方式表示,工作频率是内存颗粒实际的工作 频率,但是由于DDR内存可以在脉冲的上升和下降沿都传输数据,因此传输数据的等效频率是工作频率的两倍;而DDR2内存每个时钟能够以四倍于工作频率的 速度读/写数据,因此传输数据的等效频率是工作频率的四倍。例如DDR 200/266/333/400的工作频率分别是100/133/166/200MHz,而等效频率分别是200/266/333 /400MHzDDR2 400/533/667/800的工作频率分别是100/133/166/200MHz,而等效频率分别是400/533/667/800MHz
[
编辑本段]
【内存发展】
   在计算机诞生初期并不存在内存条的概念,最早的内存是以磁芯的形式排列在线路上,每个磁芯与晶体管组成的一个双稳态电路作为一比特(BIT)的存储器, 每一比特都要有玉米粒大小,可以想象一间的机房只能装下不超过百k字节左右的容量。后来才出线现了焊接在主板上集成内存芯片,以内存芯片的形式为计算机的 运算提供直接支持。那时的内存芯片容量都特别小,最常见的莫过于256K×1bit1M×4bit,虽然如此,但这相对于那时的运算任务来说却已经绰绰 有余了。
  内存条的诞生
  内存芯片的状态一直沿用到286初期,鉴于它存在着无法拆卸更换的弊病,这对于计算机的发展造成了现实的阻碍。有鉴于此,内存条便应运而生了。将内存芯片焊接到事先设计好的印刷线路板上,而电脑主板上也改用内存插槽。这样就把内存难以安装和更换的问题彻底解决了。
   在80286主板发布之前,内存并没有被世人所重视,这个时候的内存是直接固化在主板上,而且容量只有64 256KB,对于当时PC所运行的工作程序来说,这种内存的性能以及容量足以满足当时软件程序的处理需要。不过随着软件程序和新一代80286硬件平台 的出现,程序和硬件对内存性能提出了更高要求,为了提高速度并扩大容量,内存必须以独立的封装形式出现,因而诞生了内存条概念。
  在 80286主板刚推出的时候,内存条采用了SIMMSingle In-lineMemory Modules,单边接触内存模组)接口,容量为30pin256kb,必须是由8 片数据位和1 片校验位组成1 bank,正因如此,我们见到的30pin SIMM一般是四条一起使用。自1982PC进入民用市场一直到现在,搭配80286处理器的30pin SIMM 内存是内存领域的开山鼻祖。
  随后,在1988 1990 年当中,PC 技术迎来另一个发展高峰,也就是386486时代,此时CPU 已经向16bit 发展,所以30pin SIMM 内存再也无法满足需求,其较低的内存带宽已经成为急待解决的瓶颈,所以此时72pinSIMM 内存出现了,72pinSIMM支持32bit快速页模式内存,内存带宽得以大幅度提升。72pin SIMM内存单条容量一般为512KB 2MB,而且仅要求两条同时使用,由于其与30pin SIMM 内存无法兼容,因此这个时候PC业界毅然将30pinSIMM 内存淘汰出局了。
   EDO DRAMExtended Date Out RAM 外扩充数据模式存储器)内存,这是1991 年到1995 年之间盛行的内存条,EDO DRAMFPM DRAMFast Page Mode RAM 快速页面模式存储器)极其相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度 要比普通DRAM15~30%。工作电压为一般为5V,带宽32bit,速度在40ns以上,其主要应用在当时的486及早期的Pentium电脑上。
   在1991 年到1995 年中,让我们看到一个尴尬的情况,那就是这几年内存技术发展比较缓慢,几乎停滞不前,所以我们看到此时EDO DRAM72 pin168 pin并存的情况,事实上EDO 内存也属于72pin SIMM 内存的范畴,不过它采用了全新的寻址方式。EDO 在成本和容量上有所突破,凭借着制作工艺的飞速发展,此时单条EDO 内存的容量已经达到4 16MB 。由于Pentium及更高级别的CPU数据总线宽度都是64bit甚至更高,所以EDO DRAMFPM DRAM都必须成对使用。
  SDRAM时代
  自IntelCeleron系列以及AMD K6处理器以及相关的主板芯片组推出后,EDO DRAM内存性能再也无法满足需要了,内存技术必须彻底得到个革新才能满足新一代CPU架构的需求,此时内存开始进入比较经典的SDRAM时代。
   第一代SDRAM 内存为PC66 规范,但很快由于Intel AMD的频率之争将CPU外频提升到了100MHz,所以PC66内存很快就被PC100内存取代,接着133MHz 外频的PIII以及K7时代的来临,PC133规范也以相同的方式进一步提升SDRAM的整体性能,带宽提高到1GB/sec以上。由于SDRAM 的带宽为64bit,正好对应CPU 64bit 数据总线宽度,因此它只需要一条内存便可工作,便捷性进一步提高。在性能方面,由于其输入输出信号保持与系统外频同步,因此速度明显超越EDO 内存。
   不可否认的是,SDRAM 内存由早期的66MHz,发展后来的100MHz133MHz,尽管没能彻底解决内存带宽的瓶颈问题,但此时CPU超频已经成为DIY用户永恒的话题, 所以不少用户将品牌好的PC100品牌内存超频到133MHz使用以获得CPU超频成功,值得一提的是,为了方便一些超频用户需求,市场上出现了一些PC150PC166规范的内存。
  尽管SDRAMPC133内存的带宽可提高带宽到1064MB/S,加上Intel已经开始着手最新的Pentium 4计划,所以SDRAM PC133内存不能满足日后的发展需求,此时,Intel为了达到独占市场的目的,与Rambus联合在PC市场推广Rambus DRAM内存(称为RDRAM内存)。与SDRAM不同的是,其采用了新一代高速简单内存架构,基于一种类RISC(ReducedInstruction Set Computing,精简指令集计算机)理论,这个理论可以减少数据的复杂性,使得整个系统性能得到提高。
   AMDIntel的竞争中,这个时候是属于频率竞备时代,所以这个时候CPU的主频在不断提升,Intel为了盖过AMD,推出高频Pentium 以及Pentium 4 处理器,因此Rambus DRAM内存是被Intel看着是未来自己的竞争杀手锏,RambusDRAM内存以高时钟频率来简化每个时钟周期的数据量,因此内存带宽相当出色,如PC 1066 1066 MHz 32 bits带宽可达到4.2GByte/secRambus DRAM曾一度被认为是Pentium 4 的绝配。
  尽管如此,RambusRDRAM 内存生不逢时,后来依然要被更高速度的DDR“掠夺其宝座地位,在当时,PC600PC700Rambus RDRAM 内存因出现Intel820 芯片组失误事件PC800 Rambus RDRAM因成本过高而让Pentium 4平台高高在上,无法获得大众用户拥戴,种种问题让Rambus RDRAM胎死腹中,Rambus曾希望具有更高频率的PC1066 规范RDRAM来力挽狂澜,但最终也是拜倒在DDR 内存面前。
  DDR时代
  DDRSDRAM(Dual Date Rate SDRAM)简称DDR,也就是双倍速率SDRAM”的意思。DDR可以说是SDRAM的升级版本, DDR在时钟信号上升沿与下降沿各传输一次数据,这使得DDR的数据传输速度为传统SDRAM的两倍。由于仅多采用了下降缘信号,因此并不会造成能耗增 加。至于定址与控制信号则与传统SDRAM相同,仅在时钟上升缘传输。
  DDR 内存是作为一种在性能与成本之间折中的解决方案,其目的是迅速建立起牢固的市场空间,继而一步步在频率上高歌猛进,最终弥补内存带宽上的不足。第一代 DDR200 规范并没有得到普及,第二代PC266 DDR SRAM133MHz时钟×2倍数据传输=266MHz带宽)是由PC133 SDRAM内存所衍生出的,它将DDR 内存带向第一个高潮,目前还有不少赛扬和AMD K7处理器都在采用DDR266规格的内存,其后来的DDR333内存也属于一种过度,而DDR400内存成为目前的主流平台选配,双通道DDR400 存已经成为800FSB处理器搭配的基本标准,随后的DDR533规范则成为超频用户的选择对象。
  DDR2时代
  随着CPU 性能不断提高,我们对内存性能的要求也逐步升级。不可否认,紧紧依高频率提升带宽的DDR迟早会力不从心,因此JEDEC组织很早就开始酝酿DDR2 标准,加上LGA775接口的915/925以及最新的945等新平台开始对DDR2内存的支持,所以DDR2内存将开始演义内存领域的今天。
   DDR2 能够在100MHz 的发信频率基础上提供每插脚最少400MB/s 的带宽,而且其接口将运行于1.8V 电压上,从而进一步降低发热量,以便提高频率。此外,DDR2 将融入CASOCDODT 等新性能指标和中断指令,提升内存带宽的利用率。从JEDEC组织者阐述的DDR2标准来看,针对PC等市场的DDR2内存将拥有400533 667MHz等不同的时钟频率。高端的DDR2内存将拥有8001000MHz两种频率。DDR-II内存将采用200-220-240-针脚的 FBGA封装形式。最初的DDR2内存将采用0.13微米的生产工艺,内存颗粒的电压为1.8V,容量密度为512MB
  内存技术在2005年将会毫无悬念,SDRAM为代表的静态内存在五年内不会普及。QBMRDRAM内存也难以挽回颓势,因此DDRDDR2共存时代将是铁定的事实。
  PC-100接班人除了PC133以外,VCM(VirXual Channel Memory)也是很重
   要的一员。VCM虚拟通道存储器,这也是目前大多数较新的芯片组支持的一种内存标准,VCM内存主要根据由NEC公司开发的一种缓存式 DRAM”技术制造而成,它集成了通道缓存,由高速寄存器进行配置和控制。在实现高速数据传输的同时,VCM还维持着对传统SDRAM的高度兼容性, 所以通常也把VCM内存称为VCM SDRAMVCMSDRAM的差别在于不论是否经过CPU处理的数据,都可先交于VCM进行处理,而普通的SDRAM就只能处理经CPU处理以后的数 据,所以VCM要比SDRAM处理数据的速度快20%以上。目前可以支持VCM SDRAM的芯片组很多,包括:Intel815EVIA694X等。
  3RDRAM
  Intel在推出:PC-100后, 由于技术的发展,PC-100内存的800MBs带宽已经不能满足需求,而PC-133的带宽提高并不大(1064MBs),同样不能满足日后的发展需求。Intel为了达到独占市场的目的,与Rambus 公司联合在PC市场推广Rambus DRAM(DirectRambus DRAM)
   Rambus DRAM是:Rambus公司最早提出的一种内存规格,采用了新一代高速简单内存架构,基于一种RISC(Reduced Instruction Set Computing,精简指令集计算机)理论,从而可以减少数据的复杂性,使得整个系统性能得到提高。Rambus使用400MHz16bit总线,在一个时钟周期内,可以在上升沿和下降沿的同时传输数据,这样它的实际速度就为400MHz×2800MHz,理论带宽为 (16bit×2×400MHz8)1.6GBs,相当于PC-100的两倍。另外,Rambus也可以储存9bit字节,额外的一比特是属于保留比 特,可能以后会作为:ECC(ErroI·Checking and Correction,错误检查修正)校验位。Rambus的时钟可以高达400MHz,而且仅使用了30条铜线连接内存控制器和RIMM(Rambus In-lineMemoryModulesRambus内嵌式内存模块),减少铜线的长度和数量就可以降低数据传输中的电磁干扰,从而快速地提高内存的工作频率。不过 在高频率下,其发出的热量肯定会增加,因此第一款Rambus内存甚至需要自带散热风扇。
  DDR3时代
  DDR3相比起DDR2 更低的工作电压,从DDR21.8V降落到1.5V,性能更好更为省电;DDR24bit预读升级为8bit预读。DDR3目前最高能够达到 2000Mhz的速度,尽管目前最为快速的DDR2内存速度已经提升到800Mhz/1066Mhz的速度,但是DDR3内存模组仍会从1066Mhz 跳。
  一、DDR3DDR2基础上采用的新型设计:
  18bit预取设计,而DDR24bit预取,这样DRAM内核的频率只有接口频率的1/8DDR3-800的核心工作频率只有100MHz
  2.采用点对点的拓朴架构,以减轻地址/命令与控制总线的负担。
  3.采用100nm以下的生产工艺,将工作电压从1.8V降至1.5V,增加异步重置(Reset)与ZQ校准功能。
[
编辑本段]
【内存区别】
  DDR2DDR的区别
   与DDR相比,DDR2最主要的改进是在内存模块速度相同的情况下,可以提供相当于DDR内存两倍的带宽。这主要是通过在每个设备上高效率使用两个 DRAM核心来实现的。作为对比,在每个设备上DDR内存只能够使用一个DRAM核心。技术上讲,DDR2内存上仍然只有一个DRAM核心,但是它可以并 行存取,在每次存取中处理4个数据而不是两个数据。
  与双倍速运行的数据缓冲相结合,DDR2内存实现了在每个时钟周期处理多达4bit的数据,比传统DDR内存可以处理的2bit数据高了一倍。DDR2内存另一个改进之处在于,它采用FBGA封装方式替代了传统的TSOP方式。
   然而,尽管DDR2内存采用的DRAM核心速度和DDR的一样,但是我们仍然要使用新主板才能搭配DDR2内存,因为DDR2的物理规格和DDR是不兼 容的。首先是接口不一样,DDR2的针脚数量为240针,而DDR内存为184针;其次,DDR2内存的VDIMM电压为1.8V,也和DDR内存的 2.5V不同。
  DDR2的定义:
  DDR2Double Data Rate 2 SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟 的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存 每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。
  此外,由于DDR2标准规定所有DDR2内存均采用 FBGA封装形式,而不同于目前广泛应用的 TSOP/TSOP-II封装形式,FBGA封装可以提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回 想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到 了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。
  DDR2DDR的区别:
  在了解DDR2内存诸多新技术前,先让我们看一组DDRDDR2技术对比的数据。
  1、延迟问题:
   从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DDR的两倍。这得益于DDR2 内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz
  这样也就出现了另一个问题:在同等工作频率的DDRDDR2内存中,后者的内存延时要慢于前者。举例来说,DDR 200DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400DDR 400具有相同的带宽,它们都是3.2GB/s,但是DDR400的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就 是说DDR2-400的延迟要高于DDR400
  2、封装和发热量:

 

 


原创粉丝点击