CArray的应用

来源:互联网 发布:淘宝联盟旧版本5.2苹果 编辑:程序博客网 时间:2024/06/15 22:44
C++并不支持动态数组,MFC提供了一个CArray类来实现动态数组的功能。有效的使用CArray类,可以提高程序的效率。

MFC提供了一套模板库,来实现一些比较常见的数据结构如Array,List,Map。CArray即为其中的一个,用来实现动态数组的功能。CArray是从CObject派生,有两个模板参数,第一个参数就是CArray类数组元素的变量类型,后一个是函数调用时的参数类型。有一个类 class Object,要定义一个Object的动态数组,那么可以用以下两种方法:
CArray<Object,Object> Var1;
CArray<Object,Object&> Var2;

Var2的效率要高。
先了解一下CArray中的成员变量及作用。TYPE* m_pData; // 数据保存地址的指针
int m_nSize; // 用户当前定义的数组的大小
int m_nMaxSize; // 当前实际分配的数组的大小
int m_nGrowBy; // 分配内存时增长的元素个数
构造函数,对成员变量进行了初始化。
CArray<TYPE, ARG_TYPE>::CArray()
{
m_pData = NULL;
m_nSize = m_nMaxSize = m_nGrowBy = 0;
}
SetSize成员函数是用来为数组分配空间的。SetSize的函数定义如下:
void SetSize( int nNewSize, int nGrowBy = -1 );
nNewSize 指定数组的大小
nGrowBy 如果需要增加数组大小时增加的元素的个数。
对SetSize的代码,进行分析。
void CArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy)
{
if (nNewSize == 0)
{
// 第一种情况
// 当nNewSize为0时,需要将数组置为空,
// 如果数组本身即为空,则不需做任何处理
// 如果数组本身已含有数据,则需要清除数组元素
if (m_pData != NULL)
{
//DestructElements 函数实现了对数组元素析构函数的调用
//不能使用delete m_pData 因为我们必须要调用数组元素的析构函数
DestructElements<TYPE>(m_pData, m_nSize);
//现在才能释放内存
delete[] (BYTE*)m_pData;
m_pData = NULL;
}
m_nSize = m_nMaxSize = 0;
}
else if (m_pData == NULL)
{
// 第二种情况
// 当m_pData==NULL时还没有为数组分配内存
//首先我们要为数组分配内存,sizeof(TYPE)可以得到数组元素所需的字节数
//使用new 数组分配了内存。注意,没有调用构造函数
m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)];
//下面的函数调用数组元素的构造函数
ConstructElements<TYPE>(m_pData, nNewSize);
//记录下当前数组元素的个数
m_nSize = m_nMaxSize = nNewSize;
}
else if (nNewSize <= m_nMaxSize)
{
// 第三种情况
// 这种情况需要分配的元素个数比已经实际已经分配的元素个数要少
if (nNewSize > m_nSize)
{
// 需要增加元素的情况
// 与第二种情况的处理过程,既然元素空间已经分配,
// 只要调用新增元素的构造函数就Ok
ConstructElements<TYPE>(&m_pData[m_nSize], nNewSize-m_nSize);
}
else if (m_nSize > nNewSize)
{
// 现在是元素减少的情况,我们是否要重新分配内存呢?
// No,这种做法不好,后面来讨论。
// 下面代码释放多余的元素,不是释放内存,只是调用析构函数
DestructElements<TYPE>(&m_pData[nNewSize], m_nSize-nNewSize);
}
m_nSize = nNewSize;
}
else
{
//这是最糟糕的情况,因为需要的元素大于m_nMaxSize,
// 意味着需要重新分配内存才能解决问题

// 计算需要分配的数组元素的个数
int nNewMax;
if (nNewSize < m_nMaxSize + nGrowBy)
nNewMax = m_nMaxSize + nGrowBy;
else
nNewMax = nNewSize;
// 重新分配一块内存
TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];
//实现将已有的数据复制到新的的内存空间
memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
// 对新增的元素调用构造函数
ConstructElements<TYPE>(&pNewData[m_nSize], nNewSize-m_nSize);

//释放内存
delete[] (BYTE*)m_pData;

//将数据保存
m_pData = pNewData;
m_nSize = nNewSize;
m_nMaxSize = nNewMax;
}
}

下面是ConstructElements函数的实现代码template<class TYPE>
AFX_INLINE void AFXAPI ConstructElements(TYPE* pElements, int nCount)
{
// first do bit-wise zero initialization
memset((void*)pElements, 0, nCount * sizeof(TYPE));

for (; nCount--; pElements++)
::new((void*)pElements) TYPE;
}
ConstructElements是一个模板函数。对构造函数的调用是通过标为黑体的代码实现的。可能很多人不熟悉new 的这种用法,它可以实现指定的内存空间中构造类的实例,不会再分配新的内存空间。类的实例产生在已经分配的内存中,并且new操作会调用对象的构造函数。因为vc中没有办法直接调用构造函数,而通过这种方法,巧妙的实现对构造函数的调用。

再来看DestructElements 函数的代码template<class TYPE>
AFX_INLINE void AFXAPI DestructElements(TYPE* pElements, int nCount)
{
for (; nCount--; pElements++)
pElements->~TYPE();
}
DestructElements函数同样是一个模板函数,实现很简单,直接调用类的析构函数即可。

如果定义一个CArray对象 CArray<Object,Object&> myObject ,对myObject就可象数组一样,通过下标来访问指定的数组元素。

CArray[]有两种实现,区别在于返回值不同。

template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE CArray<TYPE, ARG_TYPE>::operator[](int nIndex) const
{ return GetAt(nIndex); }
template<class TYPE, class ARG_TYPE>
AFX_INLINE TYPE& CArray<TYPE, ARG_TYPE>::operator[](int nIndex)
{ return ElementAt(nIndex); }

前一种情况是返回的对象的实例,后一种情况是返回对象的引用。分别调用不同的成员函数来实现。

TYPE GetAt(int nIndex) const
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
return m_pData[nIndex]; }
TYPE& ElementAt(int nIndex)
{ ASSERT(nIndex >= 0 && nIndex < m_nSize);
return m_pData[nIndex]; }
除了返回值不同,其它都一样.

CArray<int,int&> arrInt;
arrInt.SetSize(10);
int n = arrInt.GetAt(0);
int& l = arrInt.ElementAt(0);
cout << arrInt[0] <<endl;
n = 10;
cout << arrInt[0] <<endl;
l = 20;
count << arrInt[0] << endl;
结果会发现,n的变化不会影响到数组,而l的变化会改变数组元素的值。实际即是对C++中引用运算符的运用。

CArray下标访问是非安全的,它并没有超标预警功能。虽然使用ASSERT提示,但下标超范围时没有进行处理,会引起非法内存访问的错误。

Add函数的作用是向数组添加一个元素。下面是它的定义: int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement).Add函数使用的参数是模板参数的二个参数,也就是说,这个参数的类型是我们来决定的,可以使用Object或Object&的方式。熟悉C++的朋友都知道,传引用的效率要高一些。如果是传值的话,会在堆栈中再产生一个新的对象,需要花费更多的时间。

template<class TYPE, class ARG_TYPE>
AFX_INLINE int CArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement)
{
int nIndex = m_nSize;
SetAtGrow(nIndex, newElement);
return nIndex;
}
它实际是通过SetAtGrow函数来完成这个功能的,它的作用是设置指定元素的值。

template<class TYPE, class ARG_TYPE>
void CArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement)
{
if (nIndex >= m_nSize)
SetSize(nIndex+1, -1);
m_pData[nIndex] = newElement;
}
SetAtGrow的实现也很简单,如果指定的元素已经存在,就把改变指定元素的值。如果指定的元素不存在,也就是 nIndex>=m_nSize的情况,就调用SetSize来调整数组的大小。

写了一个,不知道楼主的VC什么版本的,我用的是2005,如果楼主是6.0的话,由于编译器默认设置是不一样的,可能会通不过。不过类的定义和使用是一样的,只有调试信息输出由于使用了/MDd编译器选项,可能会通不过。楼主可以吧代码放在MFC中,不要在控制台工程中进行测试。

#define _AFXDLL
#include <afx.h>
#include <locale.h>
#include <afxtempl.h>


class B {
public:
CString strB;

B() {}
~B() {}

B(CONST B& b) {
this->strB = b.strB;
}

B& operator =(CONST B& b) {
this->strB = b.strB;
return *this;
}
};

class A {
public:
CArray<B, B> BArray;

A() {}
~A() {}

A(CONST A& a) {
this->BArray.RemoveAll();

for (int i = 0; i < a.BArray.GetCount(); i++) {
this->BArray.Add(a.BArray[i]);
}
}

A& operator =(CONST A& a) {
this->BArray.RemoveAll();

for (int i = 0; i < a.BArray.GetCount(); i++) {
this->BArray.Add(a.BArray[i]);
}

return *this;
}
};



CArray<A, A> AAArray;

void main() {
A a0, a1;
B b0, b1;

b0.strB = _T("第一个");
b1.strB = _T("第二个");
a0.BArray.Add(b0);
a0.BArray.Add(b1);
AAArray.Add(a0);

b0.strB = _T("第三个");
b1.strB = _T("第四个");
a1.BArray.Add(b0);
a1.BArray.Add(b1);
AAArray.Add(a1);

_tsetlocale(LC_CTYPE, _T("chs"));
TRACE(_T("AAArray[0].BArray[0] = %s/n"), AAArray[0].BArray[0]);
TRACE(_T("AAArray[0].BArray[1] = %s/n"), AAArray[0].BArray[1]);
TRACE(_T("AAArray[1].BArray[0] = %s/n"), AAArray[1].BArray[0]);
TRACE(_T("AAArray[1].BArray[1] = %s/n"), AAArray[1].BArray[1]);
}

6.0版本在DEBUG窗口查看输出信息,2003+请在OUTPUT窗口中查看

P.S.
我也认为楼主有时间研究这个东西,还不如花点时间研究下CArray或更多的MFC库类。

原创粉丝点击