Cache基本结构!

来源:互联网 发布:mac如何删除三方软件 编辑:程序博客网 时间:2024/05/21 01:31

Cache的基本结构

Cache通常由相联存储器实现。相联存储器的每一个存储块都具有额外的存储信息,称为标签(Tag)。当访问相联存储器时,将地址和每一个标签同时进行比较,从而对标签相同的存储块进行访问。Cache的3种基本结构如下:

全相联Cache

在全相联Cache中,存储的块与块之间,以及存储顺序或保存的存储器地址之间没有直接的关系。程序可以访问很多的子程序、堆栈和段,而它们是位于主存储器的不同部位上。

因此,Cache保存着很多互不相关的数据块,Cache必须对每个块和块自身的地址加以存储。当请求数据时,Cache控制器要把请求地址同所有地址加以比较,进行确认。

这种Cache结构的主要优点是,它能够在给定的时间内去存储主存器中的不同的块,命中率高;缺点是每一次请求数据同Cache中的地址进行比较需要相当的时间,速度较慢。


直接映像Cache

直接映像Cache不同于全相联Cache,地址仅需比较一次。

在直接映像Cache中,由于每个主存储器的块在Cache中仅存在一个位置,因而把地址的比较次数减少为一次。其做法是,为Cache中的每个块位置分配一个索引字段,用Tag字段区分存放在Cache位置上的不同的块。

单路直接映像把主存储器分成若干页,主存储器的每一页与Cache存储器的大小相同,匹配的主存储器的偏移量可以直接映像为Cache偏移量。Cache的Tag存储器(偏移量)保存着主存储器的页地址(页号)。

以上可以看出,直接映像Cache优于全相联Cache,能进行快速查找,其缺点是当主存储器的组之间做频繁调用时,Cache控制器必须做多次转换。

组相联Cache

组相联Cache是介于全相联Cache和直接映像Cache之间的一种结构。这种类型的Cache使用了几组直接映像的块,对于某一个给定的索引号,可以允许有几个块位置,因而可以增加命中率和系统效率。



Cache与DRAM存取的一致性

在CPU与主存之间增加了Cache之后,便存在数据在CPU和Cache及主存之间如何存取的问题。读写各有2种方式。

贯穿读出式(Look Through)

该方式将Cache隔在CPU与主存之间,CPU对主存的所有数据请求都首先送到Cache,由Cache自行在自身查找。如果命中,则切断CPU对主存的请求,并将数据送出;不命中,则将数据请求传给主存。

该方法的优点是降低了CPU对主存的请求次数,缺点是延迟了CPU对主存的访问时间。

旁路读出式(Look Aside)

在这种方式中,CPU发出数据请求时,并不是单通道地穿过Cache,而是向Cache和主存同时发出请求。由于Cache速度更快,如果命中,则Cache在将数据回送给CPU的同时,还来得及中断CPU对主存的请求;不命中,则Cache不做任何动作,由CPU直接访问主存。

它的优点是没有时间延迟,缺点是每次CPU对主存的访问都存在,这样,就占用了一部分总线时间。

写穿式(Write Through)

任一从CPU发出的写信号送到Cache的同时,也写入主存,以保证主存的数据能同步地更新。

它的优点是操作简单,但由于主存的慢速,降低了系统的写速度并占用了总线的时间。

回写式(Copy Back)

为了克服贯穿式中每次数据写入时都要访问主存,从而导致系统写速度降低并占用总线时间的弊病,尽量减少对主存的访问次数,又有了回写式。

它是这样工作的:数据一般只写到Cache,这样有可能出现Cache中的数据得到更新而主存中的数据不变(数据陈旧)的情况。但此时可在Cache 中设一标志地址及数据陈旧的信息,只有当Cache中的数据被再次更改时,才将原更新的数据写入主存相应的单元中,然后再接受再次更新的数据。这样保证了Cache和主存中的数据不致产生冲突。

s

原创粉丝点击