关于登网鉴权Milenage算法C++实现(根据3GPP TS 35.206 V6.0.0程序修改)

来源:互联网 发布:iis7 php 页面空白 编辑:程序博客网 时间:2024/05/31 18:52
 
////////////////////MilenageAlgo.h////////////////#ifndef MILENAGE_ALGO_H_INCLUDED#define MILENAGE_ALGO_H_INCLUDEDtypedef unsigned char BYTE; /*--------------------------- prototypes --------------------------*/ void f1( BYTE op_c[16], BYTE key[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_a[8] );void KeyAdd(BYTE state[4][4], BYTE roundKeys[11][4][4], int round);int ByteSub(BYTE state[4][4]);void f2345 ( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE res[8], BYTE ck[16], BYTE ik[16], BYTE ak[6] ); void f1star(BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_s[8] ); void f5star( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE ak[6] ); void KeyAdd(BYTE state[4][4], BYTE roundKeys[11][4][4], int round);void MixColumn(BYTE state[4][4]);void ComputeOPc( BYTE op[16], BYTE key[16], BYTE op_c[16] ); void RijndaelKeySchedule( BYTE key[16] ); void RijndaelEncrypt( BYTE input[16], BYTE output[16] );void ShiftRow(BYTE state[4][4]);#endif////////////////////MilenageAlgo.cpp////////////////#include "MilenageAlgo.h"/*-------------------------------------------------------------------  *          Example algorithms f1, f1*, f2, f3, f4, f5, f5*  *-------------------------------------------------------------------  *  *  A sample implementation of the example 3GPP authentication and  *  key agreement functions f1, f1*, f2, f3, f4, f5 and f5*.  This is  *  a byte-oriented implementation of the functions, and of the block  *  cipher kernel function Rijndael.  *  *  This has been coded for clarity, not necessarily for efficiency.  *  *  The functions f2, f3, f4 and f5 share the same inputs and have   *  been coded together as a single function.  f1, f1* and f5* are  *  all coded separately.  *  *-----------------------------------------------------------------*/ /*-------------------- Rijndael round subkeys ---------------------*/ BYTE roundKeys[11][4][4]; /*--------------------- Rijndael S box table ----------------------*/ BYTE S[256] = { 99,124,119,123,242,107,111,197, 48,  1,103, 43,254,215,171,118, 202,130,201,125,250, 89, 71,240,173,212,162,175,156,164,114,192, 183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21, 4,199, 35,195, 24,150,  5,154,  7, 18,128,226,235, 39,178,117, 9,131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132, 83,209,  0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207, 208,239,170,251, 67, 77, 51,133, 69,249,  2,127, 80, 60,159,168, 81,163, 64,143,146,157, 56,245,188,182,218, 33, 16,255,243,210, 205, 12, 19,236, 95,151, 68, 23,196,167,126, 61,100, 93, 25,115, 96,129, 79,220, 34, 42,144,136, 70,238,184, 20,222, 94, 11,219, 224, 50, 58, 10, 73,  6, 36, 92,194,211,172, 98,145,149,228,121, 231,200, 55,109,141,213, 78,169,108, 86,244,234,101,122,174,  8, 186,120, 37, 46, 28,166,180,198,232,221,116, 31, 75,189,139,138, 112, 62,181,102, 72,  3,246, 14, 97, 53, 87,185,134,193, 29,158, 225,248,152, 17,105,217,142,148,155, 30,135,233,206, 85, 40,223, 140,161,137, 13,191,230, 66,104, 65,153, 45, 15,176, 84,187, 22, }; /*------- This array does the multiplication by x in GF(2^8) ------*/ BYTE Xtime[256] = { 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190, 192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222, 224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254, 27, 25, 31, 29, 19, 17, 23, 21, 11,  9, 15, 13,  3,  1,  7,  5, 59, 57, 63, 61, 51, 49, 55, 53, 43, 41, 47, 45, 35, 33, 39, 37, 91, 89, 95, 93, 83, 81, 87, 85, 75, 73, 79, 77, 67, 65, 71, 69, 123,121,127,125,115,113,119,117,107,105,111,109, 99, 97,103,101, 155,153,159,157,147,145,151,149,139,137,143,141,131,129,135,133, 187,185,191,189,179,177,183,181,171,169,175,173,163,161,167,165, 219,217,223,221,211,209,215,213,203,201,207,205,195,193,199,197, 251,249,255,253,243,241,247,245,235,233,239,237,227,225,231,229 }; /*-------------------------------------------------------------------  *                            Algorithm f1  *-------------------------------------------------------------------  *  *  Computes network authentication code MAC-A from key K, random  *  challenge RAND, sequence number SQN and authentication management  *  field AMF.  *  *-----------------------------------------------------------------*/  void f1( BYTE op_c[16], BYTE key[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_a[8] ) {   //BYTE op_c[16];   BYTE temp[16];   BYTE in1[16];   BYTE out1[16];   BYTE rijndaelInput[16];   BYTE i;   RijndaelKeySchedule( key );   for (i=0; i<16; i++) {rijndaelInput[i] = rand[i] ^ op_c[i];  }  RijndaelEncrypt( rijndaelInput, temp );   for (i=0; i<6; i++) {     in1[i]    = sqn[i];     in1[i+8]  = sqn[i];   }   for (i=0; i<2; i++) {     in1[i+6]  = amf[i];     in1[i+14] = amf[i];   }   // XOR op_c and in1, rotate by r1=64, and XOR  // on the constant c1 (which is all zeroes)  for (i=0; i<16; i++) {rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];   }  // XOR on the value temp computed before  for (i=0; i<16; i++) {rijndaelInput[i] ^= temp[i];   }  RijndaelEncrypt( rijndaelInput, out1 );   for (i=0; i<16; i++) {out1[i] ^= op_c[i];  }  for (i=0; i<8; i++) {mac_a[i] = out1[i];   }  return; } // end of function f1/*-------------------------------------------------------------------  *                            Algorithms f2-f5  *-------------------------------------------------------------------  *  *  Takes op_c key K and random challenge RAND, and returns response RES,  *  confidentiality key CK, integrity key IK and anonymity key AK.  *  *-----------------------------------------------------------------*/ void f2345 ( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE res[8], BYTE ck[16], BYTE ik[16], BYTE ak[6] ) {    BYTE temp[16];   BYTE out[16];   BYTE rijndaelInput[16];   BYTE i;    RijndaelKeySchedule( k );   for (i=0; i<16; i++) {rijndaelInput[i] = rand[i] ^ op_c[i];   }   RijndaelEncrypt( rijndaelInput, temp );   // To obtain output block OUT2: XOR OPc and TEMP,    // rotate by r2=0, and XOR on the constant c2 (which   // is all zeroes except that the last bit is 1).   for (i=0; i<16; i++) {rijndaelInput[i] = temp[i] ^ op_c[i];  }  rijndaelInput[15] ^= 1;   RijndaelEncrypt( rijndaelInput, out );   for (i=0; i<16; i++) {out[i] ^= op_c[i];  }  for (i=0; i<8; i++) {res[i] = out[i+8];  }  for (i=0; i<6; i++) {ak[i]  = out[i];  }  // To obtain output block OUT3: XOR OPc and TEMP,     // rotate by r3=32, and XOR on the constant c3 (which    // is all zeroes except that the next to last bit is 1).  for (i=0; i<16; i++) {rijndaelInput[(i+12) % 16] = temp[i] ^ op_c[i];   }   rijndaelInput[15] ^= 2;   RijndaelEncrypt( rijndaelInput, out );   for (i=0; i<16; i++) {out[i] ^= op_c[i];  }  for (i=0; i<16; i++) {ck[i] = out[i];  }  // To obtain output block OUT4: XOR OPc and TEMP,   // rotate by r4=64, and XOR on the constant c4 (which     // is all zeroes except that the 2nd from last bit is 1).  for (i=0; i<16; i++) {rijndaelInput[(i+8) % 16] = temp[i] ^ op_c[i];  }  rijndaelInput[15] ^= 4;   RijndaelEncrypt( rijndaelInput, out );   for (i=0; i<16; i++) {out[i] ^= op_c[i];  }  for (i=0; i<16; i++) {ik[i] = out[i];  }  return; } // end of function f2345    /*-------------------------------------------------------------------  *                            Algorithm f1*  *-------------------------------------------------------------------  *  *  Computes resynch authentication code MAC-S from key K, random  *  challenge RAND, sequence number SQN and authentication management  *  field AMF.  *  *-----------------------------------------------------------------*/ void f1star(BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE sqn[6], BYTE amf[2], BYTE mac_s[8] ) {   BYTE temp[16];   BYTE in1[16];   BYTE out1[16];   BYTE rijndaelInput[16];   BYTE i;    RijndaelKeySchedule( k );  //ComputeOPc( op_c );   for (i=0; i<16; i++) {rijndaelInput[i] = rand[i] ^ op_c[i];  }   RijndaelEncrypt( rijndaelInput, temp );   for (i=0; i<6; i++) {     in1[i]    = sqn[i];     in1[i+8]  = sqn[i];   }   for (i=0; i<2; i++) {     in1[i+6]  = amf[i];     in1[i+14] = amf[i];   }   // XOR op_c and in1, rotate by r1=64, and XOR  // on the constant c1 (which is all zeroes)  for (i=0; i<16; i++) {rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];  }   // XOR on the value temp computed before  for (i=0; i<16; i++) {rijndaelInput[i] ^= temp[i];  }  RijndaelEncrypt( rijndaelInput, out1 );   for (i=0; i<16; i++) {out1[i] ^= op_c[i];  }  for (i=0; i<8; i++) {mac_s[i] = out1[i+8];  }    return; } // end of function f1star   /*-------------------------------------------------------------------  *                            Algorithm f5*  *-------------------------------------------------------------------  *  *  Takes key K and random challenge RAND, and returns resynch  *  anonymity key AK.  *  *-----------------------------------------------------------------*/ void f5star( BYTE op_c[16], BYTE k[16], BYTE rand[16], BYTE ak[6] ) {   BYTE temp[16];   BYTE out[16];   BYTE rijndaelInput[16];   BYTE i;    RijndaelKeySchedule( k );    for (i=0; i<16; i++) {rijndaelInput[i] = rand[i] ^ op_c[i];  }   RijndaelEncrypt( rijndaelInput, temp );   // To obtain output block OUT5: XOR OPc and TEMP,  // rotate by r5=96, and XOR on the constant c5 (which    // is all zeroes except that the 3rd from last bit is 1).  for (i=0; i<16; i++) {rijndaelInput[(i+4) % 16] = temp[i] ^ op_c[i];  }  rijndaelInput[15] ^= 8;   RijndaelEncrypt( rijndaelInput, out );   for (i=0; i<16; i++) {out[i] ^= op_c[i];   }  for (i=0; i<6; i++) {ak[i] = out[i];  }    return; } // end of function f5star    /*-------------------------------------------------------------------  *  Function to compute OPc from OP and K.  Assumes key schedule has     already been performed.  *-----------------------------------------------------------------*/ void ComputeOPc( BYTE op[16], BYTE key[16], BYTE op_c[16] ) {   BYTE i;   RijndaelKeySchedule(key);  RijndaelEncrypt( op, op_c );   for (i=0; i<16; i++) {op_c[i] ^= op[i];  }       return; } // end of function ComputeOPc/*-------------------------------------------------------------------  *  Rijndael key schedule function.  Takes 16-byte key and creates   *  all Rijndael's internal subkeys ready for encryption.  *-----------------------------------------------------------------*/ void RijndaelKeySchedule( BYTE key[16] ) {   BYTE roundConst;   int i, j;    // first round key equals key    for (i=0; i<16; i++) {roundKeys[0][i & 0x03][i>>2] = key[i];  }  roundConst = 1;   // now calculate round keys */   for (i=1; i<11; i++) {     roundKeys[i][0][0] = S[roundKeys[i-1][1][3]]                          ^ roundKeys[i-1][0][0] ^ roundConst;     roundKeys[i][1][0] = S[roundKeys[i-1][2][3]]                          ^ roundKeys[i-1][1][0];     roundKeys[i][2][0] = S[roundKeys[i-1][3][3]]                          ^ roundKeys[i-1][2][0];     roundKeys[i][3][0] = S[roundKeys[i-1][0][3]]                          ^ roundKeys[i-1][3][0];     for (j=0; j<4; j++) {       roundKeys[i][j][1] = roundKeys[i-1][j][1] ^ roundKeys[i][j][0];       roundKeys[i][j][2] = roundKeys[i-1][j][2] ^ roundKeys[i][j][1];       roundKeys[i][j][3] = roundKeys[i-1][j][3] ^ roundKeys[i][j][2];     }     // update round constant */     roundConst = Xtime[roundConst];   }    return; } // end of function RijndaelKeySchedule // Round key addition functionvoid KeyAdd(BYTE state[4][4], BYTE roundKeys[11][4][4], int round) {   int i, j;    for (i=0; i<4; i++) {  for (j=0; j<4; j++) {state[i][j] ^= roundKeys[round][i][j];  }  }      return; }  // Byte substitution transformationint ByteSub(BYTE state[4][4]) {   int i, j;    for (i=0; i<4; i++) {  for (j=0; j<4; j++) {state[i][j] = S[state[i][j]];  }         }  return 0; }  //Row shift transformationvoid ShiftRow(BYTE state[4][4]) {   BYTE temp;    // left rotate row 1 by 1    temp = state[1][0];   state[1][0] = state[1][1];   state[1][1] = state[1][2];   state[1][2] = state[1][3];   state[1][3] = temp;    //left rotate row 2 by 2  temp = state[2][0];   state[2][0] = state[2][2];   state[2][2] = temp;   temp = state[2][1];   state[2][1] = state[2][3];   state[2][3] = temp;    // left rotate row 3 by 3  temp = state[3][0];   state[3][0] = state[3][3];   state[3][3] = state[3][2];   state[3][2] = state[3][1];   state[3][1] = temp;    return; }  // MixColumn transformationvoid MixColumn(BYTE state[4][4]) {   BYTE temp, tmp, tmp0;   int i;    // do one column at a time  for (i=0; i<4;i++) {     temp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i];     tmp0 = state[0][i];     // Xtime array does multiply by x in GF2^8    tmp = Xtime[state[0][i] ^ state[1][i]];     state[0][i] ^= temp ^ tmp;      tmp = Xtime[state[1][i] ^ state[2][i]];     state[1][i] ^= temp ^ tmp;      tmp = Xtime[state[2][i] ^ state[3][i]];     state[2][i] ^= temp ^ tmp;      tmp = Xtime[state[3][i] ^ tmp0];     state[3][i] ^= temp ^ tmp;   }    return; }  /*-------------------------------------------------------------------  *  Rijndael encryption function.  Takes 16-byte input and creates   *  16-byte output (using round keys already derived from 16-byte   *  key).  *-----------------------------------------------------------------*/ void RijndaelEncrypt( BYTE input[16], BYTE output[16] ) {   BYTE state[4][4];   int i, r;    // initialise state array from input byte string  for (i=0; i<16; i++) {state[i & 0x3][i>>2] = input[i];  }  // add first round_key  KeyAdd(state, roundKeys, 0);   // do lots of full rounds  for (r=1; r<=9; r++) {     ByteSub(state);     ShiftRow(state);     MixColumn(state);     KeyAdd(state, roundKeys, r);   }   // final round  ByteSub(state);   ShiftRow(state);   KeyAdd(state, roundKeys, r);   // produce output byte string from state array   for (i=0; i<16; i++) {     output[i] = state[i & 0x3][i>>2];   }    return; } // end of function RijndaelEncrypt/*全部源代码在共享资源中*/

原创粉丝点击