STL_set

来源:互联网 发布:linux init 0不好 编辑:程序博客网 时间:2024/06/03 16:02

STL_set源码

  /**   *  @brief A standard container made up of unique keys, which can be   *  retrieved in logarithmic time.   *   *  @ingroup associative_containers   *   *  Meets the requirements of a <a href="tables.html#65">container</a>, a   *  <a href="tables.html#66">reversible container</a>, and an   *  <a href="tables.html#69">associative container</a> (using unique keys).   *   *  Sets support bidirectional iterators.   *   *  @param  Key  Type of key objects.   *  @param  Compare  Comparison function object type, defaults to less<Key>.   *  @param  Alloc  Allocator type, defaults to allocator<Key>.   *   *  The private tree data is declared exactly the same way for set and   *  multiset; the distinction is made entirely in how the tree functions are   *  called (*_unique versus *_equal, same as the standard).  */  template<typename _Key, typename _Compare = std::less<_Key>,   typename _Alloc = std::allocator<_Key> >    class set    {      // concept requirements      typedef typename _Alloc::value_type                   _Alloc_value_type;      __glibcxx_class_requires(_Key, _SGIAssignableConcept)      __glibcxx_class_requires4(_Compare, bool, _Key, _Key,_BinaryFunctionConcept)      __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept)    public:      // typedefs:      //@{      /// Public typedefs.      typedef _Key     key_type;      typedef _Key     value_type;      typedef _Compare key_compare;      typedef _Compare value_compare;      typedef _Alloc   allocator_type;      //@}    private:      typedef typename _Alloc::template rebind<_Key>::other _Key_alloc_type;      typedef _Rb_tree<key_type, value_type, _Identity<value_type>,       key_compare, _Key_alloc_type> _Rep_type;      _Rep_type _M_t;  // Red-black tree representing set.    public:      //@{      ///  Iterator-related typedefs.      typedef typename _Key_alloc_type::pointer             pointer;      typedef typename _Key_alloc_type::const_pointer       const_pointer;      typedef typename _Key_alloc_type::reference           reference;      typedef typename _Key_alloc_type::const_reference     const_reference;      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // DR 103. set::iterator is required to be modifiable,      // but this allows modification of keys.      typedef typename _Rep_type::const_iterator            iterator;      typedef typename _Rep_type::const_iterator            const_iterator;      typedef typename _Rep_type::const_reverse_iterator    reverse_iterator;      typedef typename _Rep_type::const_reverse_iterator    const_reverse_iterator;      typedef typename _Rep_type::size_type                 size_type;      typedef typename _Rep_type::difference_type           difference_type;      //@}      // allocation/deallocation      /**       *  @brief  Default constructor creates no elements.       */      set()      : _M_t() { }      /**       *  @brief  Creates a %set with no elements.       *  @param  comp  Comparator to use.       *  @param  a  An allocator object.       */      explicit      set(const _Compare& __comp,  const allocator_type& __a = allocator_type())      : _M_t(__comp, __a) { }      /**       *  @brief  Builds a %set from a range.       *  @param  first  An input iterator.       *  @param  last  An input iterator.       *       *  Create a %set consisting of copies of the elements from [first,last).       *  This is linear in N if the range is already sorted, and NlogN       *  otherwise (where N is distance(first,last)).       */      template<typename _InputIterator>        set(_InputIterator __first, _InputIterator __last): _M_t()        { _M_t._M_insert_unique(__first, __last); }      /**       *  @brief  Builds a %set from a range.       *  @param  first  An input iterator.       *  @param  last  An input iterator.       *  @param  comp  A comparison functor.       *  @param  a  An allocator object.       *       *  Create a %set consisting of copies of the elements from [first,last).       *  This is linear in N if the range is already sorted, and NlogN       *  otherwise (where N is distance(first,last)).       */      template<typename _InputIterator>        set(_InputIterator __first, _InputIterator __last,    const _Compare& __comp,    const allocator_type& __a = allocator_type()): _M_t(__comp, __a)        { _M_t._M_insert_unique(__first, __last); }      /**       *  @brief  %Set copy constructor.       *  @param  x  A %set of identical element and allocator types.       *       *  The newly-created %set uses a copy of the allocation object used       *  by @a x.       */      set(const set& __x)      : _M_t(__x._M_t) { }#ifdef __GXX_EXPERIMENTAL_CXX0X__     /**       *  @brief %Set move constructor       *  @param x  A %set of identical element and allocator types.       *       *  The newly-created %set contains the exact contents of @a x.       *  The contents of @a x are a valid, but unspecified %set.       */      set(set&& __x)      : _M_t(std::forward<_Rep_type>(__x._M_t)) { }      /**       *  @brief  Builds a %set from an initializer_list.       *  @param  l  An initializer_list.       *  @param  comp  A comparison functor.       *  @param  a  An allocator object.       *       *  Create a %set consisting of copies of the elements in the list.       *  This is linear in N if the list is already sorted, and NlogN       *  otherwise (where N is @a l.size()).       */      set(initializer_list<value_type> __l,  const _Compare& __comp = _Compare(),  const allocator_type& __a = allocator_type())      : _M_t(__comp, __a)      { _M_t._M_insert_unique(__l.begin(), __l.end()); }#endif      /**       *  @brief  %Set assignment operator.       *  @param  x  A %set of identical element and allocator types.       *       *  All the elements of @a x are copied, but unlike the copy constructor,       *  the allocator object is not copied.       */      set&      operator=(const set& __x)      {_M_t = __x._M_t;return *this;      }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief %Set move assignment operator.       *  @param x  A %set of identical element and allocator types.       *       *  The contents of @a x are moved into this %set (without copying).       *  @a x is a valid, but unspecified %set.       */      set&      operator=(set&& __x)      {// NB: DR 1204.// NB: DR 675.this->clear();this->swap(__x);      return *this;      }      /**       *  @brief  %Set list assignment operator.       *  @param  l  An initializer_list.       *       *  This function fills a %set with copies of the elements in the       *  initializer list @a l.       *       *  Note that the assignment completely changes the %set and       *  that the resulting %set's size is the same as the number       *  of elements assigned.  Old data may be lost.       */      set&      operator=(initializer_list<value_type> __l)      {this->clear();this->insert(__l.begin(), __l.end());return *this;      }#endif      // accessors:      ///  Returns the comparison object with which the %set was constructed.      key_compare      key_comp() const      { return _M_t.key_comp(); }      ///  Returns the comparison object with which the %set was constructed.      value_compare      value_comp() const      { return _M_t.key_comp(); }      ///  Returns the allocator object with which the %set was constructed.      allocator_type      get_allocator() const      { return _M_t.get_allocator(); }      /**       *  Returns a read-only (constant) iterator that points to the first       *  element in the %set.  Iteration is done in ascending order according       *  to the keys.       */      iterator      begin() const      { return _M_t.begin(); }      /**       *  Returns a read-only (constant) iterator that points one past the last       *  element in the %set.  Iteration is done in ascending order according       *  to the keys.       */      iterator      end() const      { return _M_t.end(); }      /**       *  Returns a read-only (constant) iterator that points to the last       *  element in the %set.  Iteration is done in descending order according       *  to the keys.       */      reverse_iterator      rbegin() const      { return _M_t.rbegin(); }      /**       *  Returns a read-only (constant) reverse iterator that points to the       *  last pair in the %set.  Iteration is done in descending order       *  according to the keys.       */      reverse_iterator      rend() const      { return _M_t.rend(); }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  Returns a read-only (constant) iterator that points to the first       *  element in the %set.  Iteration is done in ascending order according       *  to the keys.       */      iterator      cbegin() const      { return _M_t.begin(); }      /**       *  Returns a read-only (constant) iterator that points one past the last       *  element in the %set.  Iteration is done in ascending order according       *  to the keys.       */      iterator      cend() const      { return _M_t.end(); }      /**       *  Returns a read-only (constant) iterator that points to the last       *  element in the %set.  Iteration is done in descending order according       *  to the keys.       */      reverse_iterator      crbegin() const      { return _M_t.rbegin(); }      /**       *  Returns a read-only (constant) reverse iterator that points to the       *  last pair in the %set.  Iteration is done in descending order       *  according to the keys.       */      reverse_iterator      crend() const      { return _M_t.rend(); }#endif      ///  Returns true if the %set is empty.      bool      empty() const      { return _M_t.empty(); }      ///  Returns the size of the %set.      size_type      size() const      { return _M_t.size(); }      ///  Returns the maximum size of the %set.      size_type      max_size() const      { return _M_t.max_size(); }      /**       *  @brief  Swaps data with another %set.       *  @param  x  A %set of the same element and allocator types.       *       *  This exchanges the elements between two sets in constant time.       *  (It is only swapping a pointer, an integer, and an instance of       *  the @c Compare type (which itself is often stateless and empty), so it       *  should be quite fast.)       *  Note that the global std::swap() function is specialized such that       *  std::swap(s1,s2) will feed to this function.       */      void      swap(set& __x)      { _M_t.swap(__x._M_t); }      // insert/erase      /**       *  @brief Attempts to insert an element into the %set.       *  @param  x  Element to be inserted.       *  @return  A pair, of which the first element is an iterator that points       *           to the possibly inserted element, and the second is a bool       *           that is true if the element was actually inserted.       *       *  This function attempts to insert an element into the %set.  A %set       *  relies on unique keys and thus an element is only inserted if it is       *  not already present in the %set.       *       *  Insertion requires logarithmic time.       */      std::pair<iterator, bool>      insert(const value_type& __x)      {std::pair<typename _Rep_type::iterator, bool> __p =  _M_t._M_insert_unique(__x);return std::pair<iterator, bool>(__p.first, __p.second);      }      /**       *  @brief Attempts to insert an element into the %set.       *  @param  position  An iterator that serves as a hint as to where the       *                    element should be inserted.       *  @param  x  Element to be inserted.       *  @return  An iterator that points to the element with key of @a x (may       *           or may not be the element passed in).       *       *  This function is not concerned about whether the insertion took place,       *  and thus does not return a boolean like the single-argument insert()       *  does.  Note that the first parameter is only a hint and can       *  potentially improve the performance of the insertion process.  A bad       *  hint would cause no gains in efficiency.       *       *  For more on @a hinting, see:       *  http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html       *         *  Insertion requires logarithmic time (if the hint is not taken).       */      iterator      insert(iterator __position, const value_type& __x)      { return _M_t._M_insert_unique_(__position, __x); }      /**       *  @brief A template function that attempts to insert a range       *  of elements.       *  @param  first  Iterator pointing to the start of the range to be       *                 inserted.       *  @param  last  Iterator pointing to the end of the range.       *       *  Complexity similar to that of the range constructor.       */      template<typename _InputIterator>        void        insert(_InputIterator __first, _InputIterator __last)        { _M_t._M_insert_unique(__first, __last); }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief Attempts to insert a list of elements into the %set.       *  @param  list  A std::initializer_list<value_type> of elements       *                to be inserted.       *       *  Complexity similar to that of the range constructor.       */      void      insert(initializer_list<value_type> __l)      { this->insert(__l.begin(), __l.end()); }#endif#ifdef __GXX_EXPERIMENTAL_CXX0X__      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // DR 130. Associative erase should return an iterator.      /**       *  @brief Erases an element from a %set.       *  @param  position  An iterator pointing to the element to be erased.       *  @return An iterator pointing to the element immediately following       *          @a position prior to the element being erased. If no such        *          element exists, end() is returned.       *       *  This function erases an element, pointed to by the given iterator,       *  from a %set.  Note that this function only erases the element, and       *  that if the element is itself a pointer, the pointed-to memory is not       *  touched in any way.  Managing the pointer is the user's responsibility.       */      iterator      erase(iterator __position)      { return _M_t.erase(__position); }#else      /**       *  @brief Erases an element from a %set.       *  @param  position  An iterator pointing to the element to be erased.       *       *  This function erases an element, pointed to by the given iterator,       *  from a %set.  Note that this function only erases the element, and       *  that if the element is itself a pointer, the pointed-to memory is not       *  touched in any way.  Managing the pointer is the user's responsibility.       */      void      erase(iterator __position)      { _M_t.erase(__position); }#endif      /**       *  @brief Erases elements according to the provided key.       *  @param  x  Key of element to be erased.       *  @return  The number of elements erased.       *       *  This function erases all the elements located by the given key from       *  a %set.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibility.       */      size_type      erase(const key_type& __x)      { return _M_t.erase(__x); }#ifdef __GXX_EXPERIMENTAL_CXX0X__      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // DR 130. Associative erase should return an iterator.      /**       *  @brief Erases a [first,last) range of elements from a %set.       *  @param  first  Iterator pointing to the start of the range to be       *                 erased.       *  @param  last  Iterator pointing to the end of the range to be erased.       *  @return The iterator @a last.       *       *  This function erases a sequence of elements from a %set.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibility.       */      iterator      erase(iterator __first, iterator __last)      { return _M_t.erase(__first, __last); }#else      /**       *  @brief Erases a [first,last) range of elements from a %set.       *  @param  first  Iterator pointing to the start of the range to be       *                 erased.       *  @param  last  Iterator pointing to the end of the range to be erased.       *       *  This function erases a sequence of elements from a %set.       *  Note that this function only erases the element, and that if       *  the element is itself a pointer, the pointed-to memory is not touched       *  in any way.  Managing the pointer is the user's responsibility.       */      void      erase(iterator __first, iterator __last)      { _M_t.erase(__first, __last); }#endif      /**       *  Erases all elements in a %set.  Note that this function only erases       *  the elements, and that if the elements themselves are pointers, the       *  pointed-to memory is not touched in any way.  Managing the pointer is       *  the user's responsibility.       */      void      clear()      { _M_t.clear(); }      // set operations:      /**       *  @brief  Finds the number of elements.       *  @param  x  Element to located.       *  @return  Number of elements with specified key.       *       *  This function only makes sense for multisets; for set the result will       *  either be 0 (not present) or 1 (present).       */      size_type      count(const key_type& __x) const      { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // 214.  set::find() missing const overload      //@{      /**       *  @brief Tries to locate an element in a %set.       *  @param  x  Element to be located.       *  @return  Iterator pointing to sought-after element, or end() if not       *           found.       *       *  This function takes a key and tries to locate the element with which       *  the key matches.  If successful the function returns an iterator       *  pointing to the sought after element.  If unsuccessful it returns the       *  past-the-end ( @c end() ) iterator.       */      iterator      find(const key_type& __x)      { return _M_t.find(__x); }      const_iterator      find(const key_type& __x) const      { return _M_t.find(__x); }      //@}      //@{      /**       *  @brief Finds the beginning of a subsequence matching given key.       *  @param  x  Key to be located.       *  @return  Iterator pointing to first element equal to or greater       *           than key, or end().       *       *  This function returns the first element of a subsequence of elements       *  that matches the given key.  If unsuccessful it returns an iterator       *  pointing to the first element that has a greater value than given key       *  or end() if no such element exists.       */      iterator      lower_bound(const key_type& __x)      { return _M_t.lower_bound(__x); }      const_iterator      lower_bound(const key_type& __x) const      { return _M_t.lower_bound(__x); }      //@}      //@{      /**       *  @brief Finds the end of a subsequence matching given key.       *  @param  x  Key to be located.       *  @return Iterator pointing to the first element       *          greater than key, or end().       */      iterator      upper_bound(const key_type& __x)      { return _M_t.upper_bound(__x); }      const_iterator      upper_bound(const key_type& __x) const      { return _M_t.upper_bound(__x); }      //@}      //@{      /**       *  @brief Finds a subsequence matching given key.       *  @param  x  Key to be located.       *  @return  Pair of iterators that possibly points to the subsequence       *           matching given key.       *       *  This function is equivalent to       *  @code       *    std::make_pair(c.lower_bound(val),       *                   c.upper_bound(val))       *  @endcode       *  (but is faster than making the calls separately).       *       *  This function probably only makes sense for multisets.       */      std::pair<iterator, iterator>      equal_range(const key_type& __x)      { return _M_t.equal_range(__x); }      std::pair<const_iterator, const_iterator>      equal_range(const key_type& __x) const      { return _M_t.equal_range(__x); }      //@}      template<typename _K1, typename _C1, typename _A1>        friend bool        operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);      template<typename _K1, typename _C1, typename _A1>        friend bool        operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&);    };


 

STL_map test

//============================================================================// set// comparison operators// set::set// set::~set// member functions:// set::begin// set::clear// set::count @如果set没有return 0// set::empty// set::end// set::equal_range// set::erase// set::find// set::get_allocator// set::insert// set::key_comp// set::lower_bound// set::max_size// set::operator=// set::rbegin// set::rend// set::size// set::swap// set::upper_bound// set::value_comp// Description : set集合//============================================================================#include <iostream>#include <vector>#include <cstdio>#include <cstring>#include <algorithm>#include <set>using namespace std;int main() {int myint[]={4,4,5,2,1};set<int>myset(myint,myint+5);//1 2 4 5set<int>::iterator it;for(int i=0;i<5;i++) myset.insert(rand()%100);cout<<"set container include...";for(it=myset.begin();it!=myset.end();it++)cout<<" "<<*it;puts("");  /**set::insert(const key_type &__x):std   * set::insert(InputIterator_first,InputIterator_last):void   * set::insert(Iterator_position,const key_type &__x):iterator   *  @brief Attempts to insert an element into the %set.   *  @param  x  Element to be inserted.   *  @return  A pair, of which the first element is an iterator that points   *           to the possibly inserted element, and the second is a bool   *           that is true if the element was actually inserted.   *   *  This function attempts to insert an element into the %set.  A %set   *  relies on unique keys and thus an element is only inserted if it is   *  not already present in the %set.   *   *  Insertion requires logarithmic time.   */  /**set::count(const key_type &__x)   *  @brief  Finds the number of elements.   *  @param  x  Element to located.   *  @return  Number of elements with specified key.   *   *  This function only makes sense for multisets; for set the result will   *  either be 0 (not present) or 1 (present).   */  /**set::find(const key_type &__x):iterator   *  @brief Tries to locate an element in a %set.   *  @param  x  Element to be located.   *  @return  Iterator pointing to sought-after element, or end() if not   *           found.   *   *  This function takes a key and tries to locate the element with which   *  the key matches.  If successful the function returns an iterator   *  pointing to the sought after element.  If unsuccessful it returns the   *  past-the-end ( @c end() ) iterator.   */  /**set::erase(iterator_position):void   *  @brief Erases an element from a %set.   *  @param  position  An iterator pointing to the element to be erased.   *   *  This function erases an element, pointed to by the given iterator,   *  from a %set.  Note that this function only erases the element, and   *  that if the element is itself a pointer, the pointed-to memory is not   *  touched in any way.  Managing the pointer is the user's responsibility.   */  /**set::erase(iterator_first,iterator_last):void   *  @brief Erases a [first,last) range of elements from a %set.   *  @param  first  Iterator pointing to the start of the range to be   *                 erased.   *  @param  last  Iterator pointing to the end of the range to be erased.   *   *  This function erases a sequence of elements from a %set.   *  Note that this function only erases the element, and that if   *  the element is itself a pointer, the pointed-to memory is not touched   *  in any way.  Managing the pointer is the user's responsibility.   */  /**set::lower_bound(const key_type &__x):iterator   *  @brief Finds the beginning of a subsequence matching given key.   *  @param  x  Key to be located.   *  @return  Iterator pointing to first element equal to or greater   *           than key, or end().   *   *  This function returns the first element of a subsequence of elements   *  that matches the given key.  If unsuccessful it returns an iterator   *  pointing to the first element that has a greater value than given key   *  or end() if no such element exists.   */  /**set::upper_bound(const key_type &__x):iterator   *  @brief Finds the end of a subsequence matching given key.   *  @param  x  Key to be located.   *  @return Iterator pointing to the first element   *          greater than key, or end().   */it=myset.find(1);myset.erase(it);set<int>::iterator low=myset.lower_bound(2);set<int>::iterator high=myset.upper_bound(34);myset.erase(low,high);it=myset.begin();cout<<"after erase...set container include ...";while(it!=myset.end())cout<<" "<<*it++;puts("");for(int i=1;i<10;i++){if(myset.count(i)) cout<<i<<" is a element of set\n";else cout<<i<<" is not a element of set\n";}return 0;}//set container include... 0 1 2 4 5 34 41 67 69//after erase...set container include ... 0 41 67 69//1 is not a element of set//2 is not a element of set//3 is not a element of set//4 is not a element of set//5 is not a element of set//6 is not a element of set//7 is not a element of set//8 is not a element of set//9 is not a element of set


 

原创粉丝点击