STL_vector

来源:互联网 发布:数据化武道txt下载 编辑:程序博客网 时间:2024/05/16 01:57

STL_vector

  /**   *  @brief A standard container which offers fixed time access to   *  individual elements in any order.   *   *  @ingroup sequences   *   *  Meets the requirements of a <a href="tables.html#65">container</a>, a   *  <a href="tables.html#66">reversible container</a>, and a   *  <a href="tables.html#67">sequence</a>, including the   *  <a href="tables.html#68">optional sequence requirements</a> with the   *  %exception of @c push_front and @c pop_front.   *   *  In some terminology a %vector can be described as a dynamic   *  C-style array, it offers fast and efficient access to individual   *  elements in any order and saves the user from worrying about   *  memory and size allocation.  Subscripting ( @c [] ) access is   *  also provided as with C-style arrays.  */  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >    class vector : protected _Vector_base<_Tp, _Alloc>    {      // Concept requirements.      typedef typename _Alloc::value_type                _Alloc_value_type;      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)            typedef _Vector_base<_Tp, _Alloc> _Base;      typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;    public:      typedef _Tp value_type;      typedef typename _Tp_alloc_type::pointer           pointer;      typedef typename _Tp_alloc_type::const_pointer     const_pointer;      typedef typename _Tp_alloc_type::reference         reference;      typedef typename _Tp_alloc_type::const_reference   const_reference;      typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;      typedef __gnu_cxx::__normal_iterator<const_pointer, vector>      const_iterator;      typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;      typedef std::reverse_iterator<iterator> reverse_iterator;      typedef size_t size_type;      typedef ptrdiff_t difference_type;      typedef _Alloc                         allocator_type;    protected:      using _Base::_M_allocate;      using _Base::_M_deallocate;      using _Base::_M_impl;      using _Base::_M_get_Tp_allocator;    public:      // [23.2.4.1] construct/copy/destroy      // (assign() and get_allocator() are also listed in this section)      /**       *  @brief  Default constructor creates no elements.       */      vector()      : _Base() { }      /**       *  @brief  Creates a %vector with no elements.       *  @param  a  An allocator object.       */      explicit      vector(const allocator_type& __a)      : _Base(__a) { }      /**       *  @brief  Creates a %vector with copies of an exemplar element.       *  @param  n  The number of elements to initially create.       *  @param  value  An element to copy.       *  @param  a  An allocator.       *       *  This constructor fills the %vector with @a n copies of @a value.       */      explicit      vector(size_type __n, const value_type& __value = value_type(),     const allocator_type& __a = allocator_type())      : _Base(__n, __a)      { _M_fill_initialize(__n, __value); }      /**       *  @brief  %Vector copy constructor.       *  @param  x  A %vector of identical element and allocator types.       *       *  The newly-created %vector uses a copy of the allocation       *  object used by @a x.  All the elements of @a x are copied,       *  but any extra memory in       *  @a x (for fast expansion) will not be copied.       */      vector(const vector& __x)      : _Base(__x.size(), __x._M_get_Tp_allocator())      { this->_M_impl._M_finish =  std::__uninitialized_copy_a(__x.begin(), __x.end(),      this->_M_impl._M_start,      _M_get_Tp_allocator());      }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief  %Vector move constructor.       *  @param  x  A %vector of identical element and allocator types.       *       *  The newly-created %vector contains the exact contents of @a x.       *  The contents of @a x are a valid, but unspecified %vector.       */      vector(vector&& __x)      : _Base(std::forward<_Base>(__x)) { }      /**       *  @brief  Builds a %vector from an initializer list.       *  @param  l  An initializer_list.       *  @param  a  An allocator.       *       *  Create a %vector consisting of copies of the elements in the       *  initializer_list @a l.       *       *  This will call the element type's copy constructor N times       *  (where N is @a l.size()) and do no memory reallocation.       */      vector(initializer_list<value_type> __l,     const allocator_type& __a = allocator_type())      : _Base(__a)      {_M_range_initialize(__l.begin(), __l.end(),    random_access_iterator_tag());      }#endif      /**       *  @brief  Builds a %vector from a range.       *  @param  first  An input iterator.       *  @param  last  An input iterator.       *  @param  a  An allocator.       *       *  Create a %vector consisting of copies of the elements from       *  [first,last).       *       *  If the iterators are forward, bidirectional, or       *  random-access, then this will call the elements' copy       *  constructor N times (where N is distance(first,last)) and do       *  no memory reallocation.  But if only input iterators are       *  used, then this will do at most 2N calls to the copy       *  constructor, and logN memory reallocations.       */      template<typename _InputIterator>        vector(_InputIterator __first, _InputIterator __last,       const allocator_type& __a = allocator_type()): _Base(__a)        {  // Check whether it's an integral type.  If so, it's not an iterator.  typedef typename std::__is_integer<_InputIterator>::__type _Integral;  _M_initialize_dispatch(__first, __last, _Integral());}      /**       *  The dtor only erases the elements, and note that if the       *  elements themselves are pointers, the pointed-to memory is       *  not touched in any way.  Managing the pointer is the user's       *  responsibility.       */      ~vector()      { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,      _M_get_Tp_allocator()); }      /**       *  @brief  %Vector assignment operator.       *  @param  x  A %vector of identical element and allocator types.       *       *  All the elements of @a x are copied, but any extra memory in       *  @a x (for fast expansion) will not be copied.  Unlike the       *  copy constructor, the allocator object is not copied.       */      vector&      operator=(const vector& __x);#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief  %Vector move assignment operator.       *  @param  x  A %vector of identical element and allocator types.       *       *  The contents of @a x are moved into this %vector (without copying).       *  @a x is a valid, but unspecified %vector.       */      vector&      operator=(vector&& __x)      {// NB: DR 1204.// NB: DR 675.this->clear();this->swap(__x);return *this;      }      /**       *  @brief  %Vector list assignment operator.       *  @param  l  An initializer_list.       *       *  This function fills a %vector with copies of the elements in the       *  initializer list @a l.       *       *  Note that the assignment completely changes the %vector and       *  that the resulting %vector's size is the same as the number       *  of elements assigned.  Old data may be lost.       */      vector&      operator=(initializer_list<value_type> __l)      {this->assign(__l.begin(), __l.end());return *this;      }#endif      /**       *  @brief  Assigns a given value to a %vector.       *  @param  n  Number of elements to be assigned.       *  @param  val  Value to be assigned.       *       *  This function fills a %vector with @a n copies of the given       *  value.  Note that the assignment completely changes the       *  %vector and that the resulting %vector's size is the same as       *  the number of elements assigned.  Old data may be lost.       */      void      assign(size_type __n, const value_type& __val)      { _M_fill_assign(__n, __val); }      /**       *  @brief  Assigns a range to a %vector.       *  @param  first  An input iterator.       *  @param  last   An input iterator.       *       *  This function fills a %vector with copies of the elements in the       *  range [first,last).       *       *  Note that the assignment completely changes the %vector and       *  that the resulting %vector's size is the same as the number       *  of elements assigned.  Old data may be lost.       */      template<typename _InputIterator>        void        assign(_InputIterator __first, _InputIterator __last)        {  // Check whether it's an integral type.  If so, it's not an iterator.  typedef typename std::__is_integer<_InputIterator>::__type _Integral;  _M_assign_dispatch(__first, __last, _Integral());}#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief  Assigns an initializer list to a %vector.       *  @param  l  An initializer_list.       *       *  This function fills a %vector with copies of the elements in the       *  initializer list @a l.       *       *  Note that the assignment completely changes the %vector and       *  that the resulting %vector's size is the same as the number       *  of elements assigned.  Old data may be lost.       */      void      assign(initializer_list<value_type> __l)      { this->assign(__l.begin(), __l.end()); }#endif      /// Get a copy of the memory allocation object.      using _Base::get_allocator;      // iterators      /**       *  Returns a read/write iterator that points to the first       *  element in the %vector.  Iteration is done in ordinary       *  element order.       */      iterator      begin()      { return iterator(this->_M_impl._M_start); }      /**       *  Returns a read-only (constant) iterator that points to the       *  first element in the %vector.  Iteration is done in ordinary       *  element order.       */      const_iterator      begin() const      { return const_iterator(this->_M_impl._M_start); }      /**       *  Returns a read/write iterator that points one past the last       *  element in the %vector.  Iteration is done in ordinary       *  element order.       */      iterator      end()      { return iterator(this->_M_impl._M_finish); }      /**       *  Returns a read-only (constant) iterator that points one past       *  the last element in the %vector.  Iteration is done in       *  ordinary element order.       */      const_iterator      end() const      { return const_iterator(this->_M_impl._M_finish); }      /**       *  Returns a read/write reverse iterator that points to the       *  last element in the %vector.  Iteration is done in reverse       *  element order.       */      reverse_iterator      rbegin()      { return reverse_iterator(end()); }      /**       *  Returns a read-only (constant) reverse iterator that points       *  to the last element in the %vector.  Iteration is done in       *  reverse element order.       */      const_reverse_iterator      rbegin() const      { return const_reverse_iterator(end()); }      /**       *  Returns a read/write reverse iterator that points to one       *  before the first element in the %vector.  Iteration is done       *  in reverse element order.       */      reverse_iterator      rend()      { return reverse_iterator(begin()); }      /**       *  Returns a read-only (constant) reverse iterator that points       *  to one before the first element in the %vector.  Iteration       *  is done in reverse element order.       */      const_reverse_iterator      rend() const      { return const_reverse_iterator(begin()); }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  Returns a read-only (constant) iterator that points to the       *  first element in the %vector.  Iteration is done in ordinary       *  element order.       */      const_iterator      cbegin() const      { return const_iterator(this->_M_impl._M_start); }      /**       *  Returns a read-only (constant) iterator that points one past       *  the last element in the %vector.  Iteration is done in       *  ordinary element order.       */      const_iterator      cend() const      { return const_iterator(this->_M_impl._M_finish); }      /**       *  Returns a read-only (constant) reverse iterator that points       *  to the last element in the %vector.  Iteration is done in       *  reverse element order.       */      const_reverse_iterator      crbegin() const      { return const_reverse_iterator(end()); }      /**       *  Returns a read-only (constant) reverse iterator that points       *  to one before the first element in the %vector.  Iteration       *  is done in reverse element order.       */      const_reverse_iterator      crend() const      { return const_reverse_iterator(begin()); }#endif      // [23.2.4.2] capacity      /**  Returns the number of elements in the %vector.  */      size_type      size() const      { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }      /**  Returns the size() of the largest possible %vector.  */      size_type      max_size() const      { return _M_get_Tp_allocator().max_size(); }      /**       *  @brief  Resizes the %vector to the specified number of elements.       *  @param  new_size  Number of elements the %vector should contain.       *  @param  x  Data with which new elements should be populated.       *       *  This function will %resize the %vector to the specified       *  number of elements.  If the number is smaller than the       *  %vector's current size the %vector is truncated, otherwise       *  the %vector is extended and new elements are populated with       *  given data.       */      void      resize(size_type __new_size, value_type __x = value_type())      {if (__new_size < size())  _M_erase_at_end(this->_M_impl._M_start + __new_size);else  insert(end(), __new_size - size(), __x);      }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**  A non-binding request to reduce capacity() to size().  */      void      shrink_to_fit()      { std::__shrink_to_fit<vector>::_S_do_it(*this); }#endif      /**       *  Returns the total number of elements that the %vector can       *  hold before needing to allocate more memory.       */      size_type      capacity() const      { return size_type(this->_M_impl._M_end_of_storage - this->_M_impl._M_start); }      /**       *  Returns true if the %vector is empty.  (Thus begin() would       *  equal end().)       */      bool      empty() const      { return begin() == end(); }      /**       *  @brief  Attempt to preallocate enough memory for specified number of       *          elements.       *  @param  n  Number of elements required.       *  @throw  std::length_error  If @a n exceeds @c max_size().       *       *  This function attempts to reserve enough memory for the       *  %vector to hold the specified number of elements.  If the       *  number requested is more than max_size(), length_error is       *  thrown.       *       *  The advantage of this function is that if optimal code is a       *  necessity and the user can determine the number of elements       *  that will be required, the user can reserve the memory in       *  %advance, and thus prevent a possible reallocation of memory       *  and copying of %vector data.       */      void      reserve(size_type __n);      // element access      /**       *  @brief  Subscript access to the data contained in the %vector.       *  @param n The index of the element for which data should be       *  accessed.       *  @return  Read/write reference to data.       *       *  This operator allows for easy, array-style, data access.       *  Note that data access with this operator is unchecked and       *  out_of_range lookups are not defined. (For checked lookups       *  see at().)       */      reference      operator[](size_type __n)      { return *(this->_M_impl._M_start + __n); }      /**       *  @brief  Subscript access to the data contained in the %vector.       *  @param n The index of the element for which data should be       *  accessed.       *  @return  Read-only (constant) reference to data.       *       *  This operator allows for easy, array-style, data access.       *  Note that data access with this operator is unchecked and       *  out_of_range lookups are not defined. (For checked lookups       *  see at().)       */      const_reference      operator[](size_type __n) const      { return *(this->_M_impl._M_start + __n); }    protected:      /// Safety check used only from at().      void      _M_range_check(size_type __n) const      {if (__n >= this->size())  __throw_out_of_range(__N("vector::_M_range_check"));      }    public:      /**       *  @brief  Provides access to the data contained in the %vector.       *  @param n The index of the element for which data should be       *  accessed.       *  @return  Read/write reference to data.       *  @throw  std::out_of_range  If @a n is an invalid index.       *       *  This function provides for safer data access.  The parameter       *  is first checked that it is in the range of the vector.  The       *  function throws out_of_range if the check fails.       */      reference      at(size_type __n)      {_M_range_check(__n);return (*this)[__n];       }      /**       *  @brief  Provides access to the data contained in the %vector.       *  @param n The index of the element for which data should be       *  accessed.       *  @return  Read-only (constant) reference to data.       *  @throw  std::out_of_range  If @a n is an invalid index.       *       *  This function provides for safer data access.  The parameter       *  is first checked that it is in the range of the vector.  The       *  function throws out_of_range if the check fails.       */      const_reference      at(size_type __n) const      {_M_range_check(__n);return (*this)[__n];      }      /**       *  Returns a read/write reference to the data at the first       *  element of the %vector.       */      reference      front()      { return *begin(); }      /**       *  Returns a read-only (constant) reference to the data at the first       *  element of the %vector.       */      const_reference      front() const      { return *begin(); }      /**       *  Returns a read/write reference to the data at the last       *  element of the %vector.       */      reference      back()      { return *(end() - 1); }            /**       *  Returns a read-only (constant) reference to the data at the       *  last element of the %vector.       */      const_reference      back() const      { return *(end() - 1); }      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // DR 464. Suggestion for new member functions in standard containers.      // data access      /**       *   Returns a pointer such that [data(), data() + size()) is a valid       *   range.  For a non-empty %vector, data() == &front().       */      pointer      data()      { return pointer(this->_M_impl._M_start); }      const_pointer      data() const      { return const_pointer(this->_M_impl._M_start); }      // [23.2.4.3] modifiers      /**       *  @brief  Add data to the end of the %vector.       *  @param  x  Data to be added.       *       *  This is a typical stack operation.  The function creates an       *  element at the end of the %vector and assigns the given data       *  to it.  Due to the nature of a %vector this operation can be       *  done in constant time if the %vector has preallocated space       *  available.       */      void      push_back(const value_type& __x)      {if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)  {    this->_M_impl.construct(this->_M_impl._M_finish, __x);    ++this->_M_impl._M_finish;  }else  _M_insert_aux(end(), __x);      }#ifdef __GXX_EXPERIMENTAL_CXX0X__      void      push_back(value_type&& __x)      { emplace_back(std::move(__x)); }      template<typename... _Args>        void        emplace_back(_Args&&... __args);#endif      /**       *  @brief  Removes last element.       *       *  This is a typical stack operation. It shrinks the %vector by one.       *       *  Note that no data is returned, and if the last element's       *  data is needed, it should be retrieved before pop_back() is       *  called.       */      void      pop_back()      {--this->_M_impl._M_finish;this->_M_impl.destroy(this->_M_impl._M_finish);      }#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief  Inserts an object in %vector before specified iterator.       *  @param  position  An iterator into the %vector.       *  @param  args  Arguments.       *  @return  An iterator that points to the inserted data.       *       *  This function will insert an object of type T constructed       *  with T(std::forward<Args>(args)...) before the specified location.       *  Note that this kind of operation could be expensive for a %vector       *  and if it is frequently used the user should consider using       *  std::list.       */      template<typename... _Args>        iterator        emplace(iterator __position, _Args&&... __args);#endif      /**       *  @brief  Inserts given value into %vector before specified iterator.       *  @param  position  An iterator into the %vector.       *  @param  x  Data to be inserted.       *  @return  An iterator that points to the inserted data.       *       *  This function will insert a copy of the given value before       *  the specified location.  Note that this kind of operation       *  could be expensive for a %vector and if it is frequently       *  used the user should consider using std::list.       */      iterator      insert(iterator __position, const value_type& __x);#ifdef __GXX_EXPERIMENTAL_CXX0X__      /**       *  @brief  Inserts given rvalue into %vector before specified iterator.       *  @param  position  An iterator into the %vector.       *  @param  x  Data to be inserted.       *  @return  An iterator that points to the inserted data.       *       *  This function will insert a copy of the given rvalue before       *  the specified location.  Note that this kind of operation       *  could be expensive for a %vector and if it is frequently       *  used the user should consider using std::list.       */      iterator      insert(iterator __position, value_type&& __x)      { return emplace(__position, std::move(__x)); }      /**       *  @brief  Inserts an initializer_list into the %vector.       *  @param  position  An iterator into the %vector.       *  @param  l  An initializer_list.       *       *  This function will insert copies of the data in the        *  initializer_list @a l into the %vector before the location       *  specified by @a position.       *       *  Note that this kind of operation could be expensive for a       *  %vector and if it is frequently used the user should       *  consider using std::list.       */      void      insert(iterator __position, initializer_list<value_type> __l)      { this->insert(__position, __l.begin(), __l.end()); }#endif      /**       *  @brief  Inserts a number of copies of given data into the %vector.       *  @param  position  An iterator into the %vector.       *  @param  n  Number of elements to be inserted.       *  @param  x  Data to be inserted.       *       *  This function will insert a specified number of copies of       *  the given data before the location specified by @a position.       *       *  Note that this kind of operation could be expensive for a       *  %vector and if it is frequently used the user should       *  consider using std::list.       */      void      insert(iterator __position, size_type __n, const value_type& __x)      { _M_fill_insert(__position, __n, __x); }      /**       *  @brief  Inserts a range into the %vector.       *  @param  position  An iterator into the %vector.       *  @param  first  An input iterator.       *  @param  last   An input iterator.       *       *  This function will insert copies of the data in the range       *  [first,last) into the %vector before the location specified       *  by @a pos.       *       *  Note that this kind of operation could be expensive for a       *  %vector and if it is frequently used the user should       *  consider using std::list.       */      template<typename _InputIterator>        void        insert(iterator __position, _InputIterator __first,       _InputIterator __last)        {  // Check whether it's an integral type.  If so, it's not an iterator.  typedef typename std::__is_integer<_InputIterator>::__type _Integral;  _M_insert_dispatch(__position, __first, __last, _Integral());}      /**       *  @brief  Remove element at given position.       *  @param  position  Iterator pointing to element to be erased.       *  @return  An iterator pointing to the next element (or end()).       *       *  This function will erase the element at the given position and thus       *  shorten the %vector by one.       *       *  Note This operation could be expensive and if it is       *  frequently used the user should consider using std::list.       *  The user is also cautioned that this function only erases       *  the element, and that if the element is itself a pointer,       *  the pointed-to memory is not touched in any way.  Managing       *  the pointer is the user's responsibility.       */      iterator      erase(iterator __position);      /**       *  @brief  Remove a range of elements.       *  @param  first  Iterator pointing to the first element to be erased.       *  @param  last  Iterator pointing to one past the last element to be       *                erased.       *  @return  An iterator pointing to the element pointed to by @a last       *           prior to erasing (or end()).       *       *  This function will erase the elements in the range [first,last) and       *  shorten the %vector accordingly.       *       *  Note This operation could be expensive and if it is       *  frequently used the user should consider using std::list.       *  The user is also cautioned that this function only erases       *  the elements, and that if the elements themselves are       *  pointers, the pointed-to memory is not touched in any way.       *  Managing the pointer is the user's responsibility.       */      iterator      erase(iterator __first, iterator __last);      /**       *  @brief  Swaps data with another %vector.       *  @param  x  A %vector of the same element and allocator types.       *       *  This exchanges the elements between two vectors in constant time.       *  (Three pointers, so it should be quite fast.)       *  Note that the global std::swap() function is specialized such that       *  std::swap(v1,v2) will feed to this function.       */      void      swap(vector& __x)      {std::swap(this->_M_impl._M_start, __x._M_impl._M_start);std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);std::swap(this->_M_impl._M_end_of_storage,  __x._M_impl._M_end_of_storage);// _GLIBCXX_RESOLVE_LIB_DEFECTS// 431. Swapping containers with unequal allocators.std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),    __x._M_get_Tp_allocator());      }      /**       *  Erases all the elements.  Note that this function only erases the       *  elements, and that if the elements themselves are pointers, the       *  pointed-to memory is not touched in any way.  Managing the pointer is       *  the user's responsibility.       */      void      clear()      { _M_erase_at_end(this->_M_impl._M_start); }    protected:      /**       *  Memory expansion handler.  Uses the member allocation function to       *  obtain @a n bytes of memory, and then copies [first,last) into it.       */      template<typename _ForwardIterator>        pointer        _M_allocate_and_copy(size_type __n,     _ForwardIterator __first, _ForwardIterator __last)        {  pointer __result = this->_M_allocate(__n);  __try    {      std::__uninitialized_copy_a(__first, __last, __result,  _M_get_Tp_allocator());      return __result;    }  __catch(...)    {      _M_deallocate(__result, __n);      __throw_exception_again;    }}      // Internal constructor functions follow.      // Called by the range constructor to implement [23.1.1]/9      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // 438. Ambiguity in the "do the right thing" clause      template<typename _Integer>        void        _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)        {  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));  this->_M_impl._M_end_of_storage =    this->_M_impl._M_start + static_cast<size_type>(__n);  _M_fill_initialize(static_cast<size_type>(__n), __value);}      // Called by the range constructor to implement [23.1.1]/9      template<typename _InputIterator>        void        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,       __false_type)        {  typedef typename std::iterator_traits<_InputIterator>::    iterator_category _IterCategory;  _M_range_initialize(__first, __last, _IterCategory());}      // Called by the second initialize_dispatch above      template<typename _InputIterator>        void        _M_range_initialize(_InputIterator __first,    _InputIterator __last, std::input_iterator_tag)        {  for (; __first != __last; ++__first)    push_back(*__first);}      // Called by the second initialize_dispatch above      template<typename _ForwardIterator>        void        _M_range_initialize(_ForwardIterator __first,    _ForwardIterator __last, std::forward_iterator_tag)        {  const size_type __n = std::distance(__first, __last);  this->_M_impl._M_start = this->_M_allocate(__n);  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;  this->_M_impl._M_finish =    std::__uninitialized_copy_a(__first, __last,this->_M_impl._M_start,_M_get_Tp_allocator());}      // Called by the first initialize_dispatch above and by the      // vector(n,value,a) constructor.      void      _M_fill_initialize(size_type __n, const value_type& __value)      {std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,       _M_get_Tp_allocator());this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;      }      // Internal assign functions follow.  The *_aux functions do the actual      // assignment work for the range versions.      // Called by the range assign to implement [23.1.1]/9      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // 438. Ambiguity in the "do the right thing" clause      template<typename _Integer>        void        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)        { _M_fill_assign(__n, __val); }      // Called by the range assign to implement [23.1.1]/9      template<typename _InputIterator>        void        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,   __false_type)        {  typedef typename std::iterator_traits<_InputIterator>::    iterator_category _IterCategory;  _M_assign_aux(__first, __last, _IterCategory());}      // Called by the second assign_dispatch above      template<typename _InputIterator>        void        _M_assign_aux(_InputIterator __first, _InputIterator __last,      std::input_iterator_tag);      // Called by the second assign_dispatch above      template<typename _ForwardIterator>        void        _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,      std::forward_iterator_tag);      // Called by assign(n,t), and the range assign when it turns out      // to be the same thing.      void      _M_fill_assign(size_type __n, const value_type& __val);      // Internal insert functions follow.      // Called by the range insert to implement [23.1.1]/9      // _GLIBCXX_RESOLVE_LIB_DEFECTS      // 438. Ambiguity in the "do the right thing" clause      template<typename _Integer>        void        _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,   __true_type)        { _M_fill_insert(__pos, __n, __val); }      // Called by the range insert to implement [23.1.1]/9      template<typename _InputIterator>        void        _M_insert_dispatch(iterator __pos, _InputIterator __first,   _InputIterator __last, __false_type)        {  typedef typename std::iterator_traits<_InputIterator>::    iterator_category _IterCategory;  _M_range_insert(__pos, __first, __last, _IterCategory());}      // Called by the second insert_dispatch above      template<typename _InputIterator>        void        _M_range_insert(iterator __pos, _InputIterator __first,_InputIterator __last, std::input_iterator_tag);      // Called by the second insert_dispatch above      template<typename _ForwardIterator>        void        _M_range_insert(iterator __pos, _ForwardIterator __first,_ForwardIterator __last, std::forward_iterator_tag);      // Called by insert(p,n,x), and the range insert when it turns out to be      // the same thing.      void      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);      // Called by insert(p,x)#ifndef __GXX_EXPERIMENTAL_CXX0X__      void      _M_insert_aux(iterator __position, const value_type& __x);#else      template<typename... _Args>        void        _M_insert_aux(iterator __position, _Args&&... __args);#endif      // Called by the latter.      size_type      _M_check_len(size_type __n, const char* __s) const      {if (max_size() - size() < __n)  __throw_length_error(__N(__s));const size_type __len = size() + std::max(size(), __n);return (__len < size() || __len > max_size()) ? max_size() : __len;      }      // Internal erase functions follow.      // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,      // _M_assign_aux.      void      _M_erase_at_end(pointer __pos)      {std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());this->_M_impl._M_finish = __pos;      }    };


STL_vector Test

//============================================================================// Name        : STL_vector.cpp// Author      : // Version     :// Copyright   : Your copyright notice// Description : Hello World in C++, Ansi-style//============================================================================#include <iostream>#include <cstdio>#include <cstring>#include <vector>#include <algorithm>using namespace std;int main() {vector<int>myvector;vector<int>::iterator it;for(int i=0;i<5;i++) myvector.push_back(i);it=myvector.begin();cout<<"vector container .... ";while(it!=myvector.end()){cout<<*it++<<" ";}puts("");cout<<"vector container.... ";myvector.erase(myvector.begin());for(it=myvector.begin();it!=myvector.end();it++)cout<<*it<<" ";puts("");return 0;}/* * vector container .... 0 1 2 3 4 * vector container.... 1 2 3 4 */


 

原创粉丝点击