线程状态的转换、同步与解锁

来源:互联网 发布:js实现饼图 编辑:程序博客网 时间:2024/06/05 20:49
 

一、线程的状态转换

线程的状态转换是线程控制的基础。线程状态总的可分为五大状态:分别是生、死、可运行、运行、等待/阻塞。用一个图来描述如下:

 

1、新状态:线程对象已经创建,还没有在其上调用start()方法。 

2、可运行状态:当线程有资格运行,但调度程序还没有把它选定为运行线程时线程所处的状态。当start()方法调用时,线程首先进入可运行状态。在线程运行之后或者从阻塞、等待或睡眠状态回来后,也返回到可运行状态。 

3、运行状态:线程调度程序从可运行池中选择一个线程作为当前线程时线程所处的状态。这也是线程进入运行状态的唯一一种方式。 

4、等待/阻塞/睡眠状态:这是线程有资格运行时它所处的状态。实际上这个三状态组合为一种,其共同点是:线程仍旧是活的,但是当前没有条件运行。换句话说,它是可运行的,但是如果某件事件出现,他可能返回到可运行状态。 

5、死亡态:当线程的run()方法完成时就认为它死去。这个线程对象也许是活的,但是,它已经不是一个单独执行的线程。线程一死亡,就不能复生。 如果在一个死去的线程上调用start()方法,会抛出java.lang.IllegalThreadStateException异常。

 对于线程的阻止,考虑一下三个方面,不考虑IO阻塞的情况:

l 睡眠;

l 等待;

l 因为需要一个对象的锁定而被阻塞。 

1、睡眠

Thread.sleep(long millis)和Thread.sleep(long millis, int nanos)静态方法强制当前正在执行的线程休眠(暂停执行),以“减慢线程”。当线程睡眠时,它入睡在某个地方,在苏醒之前不会返回到可运行状态。当睡眠时间到期,则返回到可运行状态。

睡眠的实现:调用静态方法。

        try {
            Thread.sleep(123);
        } catch (InterruptedException e) {
            e.printStackTrace();  
        }

  注意:

1、线程睡眠是帮助所有线程获得运行机会的最好方法。

2、线程睡眠到期自动苏醒,并返回到可运行状态,不是运行状态。sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就开始执行。

3、sleep()是静态方法,只能控制当前正在运行的线程。

2、线程的优先级和线程让步yield()

线程的让步是通过Thread.yield()来实现的,作用是:暂停当前正在执行的线程对象,并执行其他线程。 

  注意:当设计多线程应用程序的时候,一定不要依赖于线程的优先级。因为线程调度优先级操作是没有保障的,只能把线程优先级作用作为一种提高程序效率的方法,但是要保证程序不依赖这种操作。 

当线程池中线程都具有相同的优先级,调度程序的JVM实现自由选择它喜欢的线程。这时候调度程序的操作有两种可能:一是选择一个线程运行,直到它阻塞或者运行完成为止。二是时间分片,为池内的每个线程提供均等的运行机会。

设置线程的优先级:线程默认的优先级是创建它的执行线程的优先级。可以通过setPriority(int newPriority)更改线程的优先级。例如:

        Thread t = new MyThread();
        t.setPriority(8);
        t.start();

线程默认优先级是5,Thread类中有三个常量,定义线程优先级范围:

static int MAX_PRIORITY 
          线程可以具有的最高优先级。 
static int MIN_PRIORITY 
          线程可以具有的最低优先级。 
static int NORM_PRIORITY 
          分配给线程的默认优先级。 

3、Thread.yield()方法

作用是:暂停当前正在执行的线程对象,并执行其他线程。

public class Test { 
        public static void main(String[] args) { 
                Thread t1 = new MyThread1(); 
                Thread t2 = new Thread(new MyRunnable()); 

                t2.start(); 
                t1.start(); 
    } } 

class MyThread1 extends Thread { 
        public void run() { 
                for (int i = 0; i < 10; i++) { 
                        System.out.println("线程1第" + i + "次执行!"); 
                } } } 

class MyRunnable implements Runnable { 
        public void run() { 
                for (int i = 0; i < 10; i++) { 
                        System.out.println("线程2第" + i + "次执行!"); 
                        Thread.yield(); 
                } } }

4、join()方法 

Thread的非静态方法join()让一个线程B“加入”到另外一个线程A的尾部。在A执行完毕之前,B不能工作。例如:

        Thread t = new MyThread();
        t.start();
        t.join();

join为非静态方法,定义如下:

void join()    
    等待该线程终止。    
void join(long millis)    
    等待该线程终止的时间最长为 millis 毫秒。    
void join(long millis, int nanos)    
    等待该线程终止的时间最长为 millis 毫秒 + nanos 纳秒。 

 

线程的加入join()对线程栈导致的结果是线程栈发生了变化,当然这些变化都是瞬时的。下面给示意图: 

public class Test {

public static void main(String[] args) {

for (int i = 0; i < 20; i++) {

System.out.println("主线程第" + i + "次执行!");

if(i==3){

for (int j = 0; j < 10; j++) {

System.out.println("线程1第" + i + "次执行!");

}}}}}

    在最后的两节课中,老师讲了Java线程中线程的同步与锁问题。同步,在这里指同时读取数据,这样会导致线程执行后出现一个以上相同的结果,为了解决这个问题而引入了锁。

1、锁的原理

Java中每个对象都有一个内置锁

当程序运行到非静态的synchronized同步方法上时,自动获得与正在执行代码类的当前实例(this实例)有关的锁。获得一个对象的锁也称为获取锁、锁定对象、在对象上锁定或在对象上同步。

当程序运行到synchronized同步方法或代码块时才该对象锁才起作用。

一个对象只有一个锁。所以,如果一个线程获得该锁,就没有其他线程可以获得锁,直到第一个线程释放(或返回)锁。这也意味着任何其他线程都不能进入该对象上的synchronized方法或代码块,直到该锁被释放。

释放锁是指持锁线程退出了synchronized同步方法或代码块。

关于锁和同步,有以下几个要点:

1)只能同步方法,而不能同步变量和类;

2)每个对象只有一个锁;

3)不必同步类中所有的方法,类可以同时拥有同步和非同步方法。

4)如果两个线程要执行一个类中的synchronized方法,并且两个线程使用相同的实例来调用方法,那么一次只能有一个线程能够执行方法,另一个需要等待,直到锁被释放。也就是说:如果一个线程在对象上获得一个锁,就没有任何其他线程可以进入(该对象的)类中的任何一个同步方法。

5)如果线程拥有同步和非同步方法,则非同步方法可被多个线程自由访问而不受锁的限制。

6)线程睡眠时,它所持的任何锁都不会释放。 

7)线程可以获得多个锁。

8)同步损害并发性,应该尽可能缩小同步范围。同步不但可以同步整个方法,还可以同步方法中一部分代码块。

9)在使用同步代码块时候,应该指定在哪个对象上同步,也就是说要获取哪个对象的锁。

线程同步的总结:

1、线程同步的目的是为了保护多个线程访问一个资源时对资源的破坏。

2、线程同步方法是通过锁来实现,每个对象都有切仅有一个锁,这个锁与一个特定的对象关联,线程一旦获取了对象锁,其他访问该对象的线程就无法再访问该对象的其他同步方法。

3、对于静态同步方法,锁是针对这个类的,锁对象是该类的Class对象。静态和非静态方法的锁互不干预。一个线程获得锁,当在一个同步方法中访问另外对象上的同步方法时,会获取这两个对象锁。

4、对于同步,要时刻清醒在哪个对象上同步,这是关键。

5、编写线程安全的类,需要时刻注意对多个线程竞争访问资源的逻辑和安全做出正确的判断,对“原子”操作做出分析,并保证原子操作期间别的线程无法访问竞争资源。

6、当多个线程等待一个对象锁时,没有获取到锁的线程将发生阻塞。

7、死锁是线程间相互等待锁锁造成的,在实际中发生的概率非常的小。

原创粉丝点击