UVa Problem 10249 The Grand Dinner - 网络流解题

来源:互联网 发布:安卓7.0替换内核linux 编辑:程序博客网 时间:2024/05/19 10:56
// The Grand Dinner (丰盛的晚餐)// PC/UVa IDs: 111007/10249, Popularity: C, Success rate: high Level: 4// Verdict: Accepted// Submission Date: 2011-10-09// UVa Run Time: 3.324s//// 版权所有(C)2011,邱秋。metaphysis # yeah dot net//// 网络流解法:源点 source 和每支参赛队伍之间弧的容量为参赛队伍人数,每支队伍到桌子之间弧的容量为// 1,每张桌子到汇点 sink 弧的容量为桌子的座位数,然后使用网络流算法求最大流,如果最大流等于参赛队// 伍总人数,则满足条件,输出方案,否则不满足条件,输出 0。此处使用宽度优先遍历的 Ford-Fullerson// 增广路方法,又名 Edmonds-Karp 算法,算法效率为 O(V*E*E),对于顶点数和边数增加的题目,可以// 使用最短扩增路 (Shortest Augment Path,SAP) 算法。#include <iostream>#include <cstring>#include <queue>using namespace std;#define MAXTEAMS 71#define MAXTABLES 51#define MAXV 130// 最大顶点数。#define UNSOLVABLE 0// 无安排方案。#define SOLVABLE 1// 存在安排方案。#define DUMMY (-1)// 表示顶点无父亲顶点。struct edge{int vertex;// 相连的顶点。int capacity;// 容量。int flow;// 流量。int residual;// 残余流量。};edge edges[MAXV][MAXV];// 有向图的边。int degree[MAXV];// 有向图中顶点的度。int parents[MAXV];// 遍历标记,当前顶点的父亲顶点。bool discovered[MAXV];// 遍历标记,是否已发现。// 使用宽度优先遍历找到一条从源点到汇点的剩余流量为正的通路。从源到汇的任意增广路都能增加总流量,因// 此可以借用宽度优先遍历,需要注意的是,只能沿着“还能增广”(即残余容量为正数)的边走,因此需要在// 遍历过程中判断残余容量是否为正,以帮助宽度优先遍历区分开饱和边和非饱和边。void breadthFirstSearch(int source, int sink){queue < int > vertices;vertices.push(source);discovered[source] = true;while (!vertices.empty()){int v = vertices.front();vertices.pop();for (int i = 0; i < degree[v]; i++)// 检查是否为饱和边。if (edges[v][i].residual > 0)if (discovered[edges[v][i].vertex] == false){vertices.push(edges[v][i].vertex);discovered[edges[v][i].vertex] = true;parents[edges[v][i].vertex] = v;// 遍历到汇点后说明已经找到一条增广路,可以退出。if (edges[v][i].vertex == sink)return;}}}// 找到顶点 x 与顶点 y 之间的有向边。edge *findEdge(int x, int y){for (int i = 0; i < degree[x]; i++)if (edges[x][i].vertex == y)return &edges[x][i];}// 增广,注意对前向弧和反向弧的处理。void augmentPath(int source, int sink, int volume){if (source == sink)return;edge *e = findEdge(parents[sink], sink);e->flow += volume;e->residual -= volume;e = findEdge(sink, parents[sink]);e->residual += volume;augmentPath(source, parents[sink], volume);}// 根据 BFS 的结果,从汇点 sink 到源点 source 计算通路的容量。增广的过程把尽量多的残余流量转// 化为正流量。增广路的容量等于整条路中残余容量的最小值,正如车流的速度取决于最拥挤的路段。int pathVolume(int source, int sink){if (parents[sink] == DUMMY)return 0;edge *e = findEdge(parents[sink], sink);if (source == parents[sink])return (e->residual);elsereturn (min(pathVolume(source, parents[sink]), e->residual));}// 初始化搜索变量。void initializeSearch(){memset(discovered, false, sizeof(discovered));memset(parents, DUMMY, sizeof(parents));}// 网络流解题。每次从源到汇寻找一条可以增加总流量的路径,并且用它增广。当没有增广路存在时,算法终// 止,此时的流就是最大流。注意需要将每条有向边 e = (i,j) 拆分成两条弧 (i,j) 和 (j,i),// 其中 (i,j) 的初始残余容量为 e 的容量,(j,i) 的残余容量为 0,所有的弧的初始流均设为 0。// 事实上,任意可行的流都可以作为算法的初始流,快速构造接近最大流的可行流能大大提高算法效率。bool netflow(int source, int sink, int nTotal){// Edmonds-Karp 算法。int maxFlow = 0, volume;initializeSearch();breadthFirstSearch(source, sink);volume = pathVolume(source, sink);while (volume){maxFlow += volume;augmentPath(source, sink, volume);initializeSearch();breadthFirstSearch(source, sink);volume = pathVolume(source, sink);}return maxFlow == nTotal;}int main(int ac, char *av[]){int nTeams, nTables, nTotal;// 队伍数,桌子数,总人数。int nCount, maxMembers;int source, sink;while (cin >> nTeams >> nTables, nTeams || nTables){source = nTotal = maxMembers = 0;sink = nTeams + nTables + 1;memset(degree, 0, sizeof(degree));// 读入参赛队人数并找参赛队的最大人数。for (int i = 1; i <= nTeams; i++){cin >> nCount;if (maxMembers < nCount)maxMembers = nCount;nTotal += nCount;// 源点 source 到参赛队伍的弧。edges[source][degree[source]++] = (edge){i, nCount, 0, nCount};edges[i][degree[i]++] = (edge){source, nCount, 0, 0};}// 读入桌子座位数量。for (int i = nTeams + 1; i <= (nTeams + nTables); i++){cin >> nCount;// 参赛队伍到桌子的弧。for (int j = 1; j <= nTeams; j++){edges[j][degree[j]++] = (edge){i, 1, 0, 1};edges[i][degree[i]++] = (edge){j, 1, 0, 0};}// 桌子到汇点 sink 的弧。edges[i][degree[i]++] = (edge){sink, nCount, 0, nCount};edges[sink][degree[sink]++] = (edge){i, nCount, 0, 0};}// 若参赛队伍数为 0,则直接输出存在,但是不用输出具体方案,因为所有桌子无人坐。if (nTeams == 0){cout << SOLVABLE << "\n";continue;}// 若桌子数为 0 或者参赛队伍中某队人数超过桌子数,则无法安排。if (nTables == 0 || maxMembers > nTables){cout << UNSOLVABLE << "\n";continue;}bool solvable = netflow(source, sink, nTotal);cout << (solvable ? SOLVABLE : UNSOLVABLE) << "\n";if (!solvable)continue;for (int i = 1; i <= nTeams; i++){int blank = 0;for (int j = 0; j < degree[i]; j++){if (edges[i][j].residual == 0){cout << (blank++ ? " " : "");cout << (edges[i][j].vertex - nTeams);}}cout << "\n";}}return 0;}