Java多线程同步设计中使用Metux

来源:互联网 发布:临沂知豆租赁电话 编辑:程序博客网 时间:2024/06/05 20:17
 

Mutex是互斥体,广泛地应用在多线程编程中。本文以广为流程的Doug Lea的concurrent工具包的Mutex实现为例,进行一点探讨。在Doug Lea的concurrent工具包中,Mutex实现了Sync接口,该接口是concurrent工具包中所有锁(lock)、门(gate)和条件变量(condition)的公共接口,Sync的实现类主要有:Mutex、Semaphore及其子类、Latch、CountDown、ReentrantLock等。这也体现了面向抽象编程的思想,使我们可以在不改变代码或者改变少量代码的情况下,选择使用Sync的不同实现。下面是Sync接口的定义:


public interface Sync{ public void acquire() throws InterruptedException; //获取许可 public boolean attempt(long msecs) throws InterruptedException; //尝试获取许可 public void release(); //释放许可}


  通过使用Sync可以替代Java synchronized关键字,并提供更加灵活的同步控制。当然,并不是说 concurrent工具包是和Java synchronized独立的技术,其实concurrent工具包也是在synchronized的基础上搭建的,从下面对Mutex源码的解析即可以看到这一点。synchronized关键字仅在方法内或者代码块内有效,而使用Sync却可以跨越方法甚至通过在对象之间传递,跨越对象进行同步。这是Sync及concurrent工具包比直接使用synchronized更加强大的地方。

  注意Sync中的acquire()和attempt()都会抛出InterruptedException,所以使用Sync及其子类时,调用这些方法一定要捕获InterruptedException.而release()方法并不会抛出InterruptedException,这是因为在acquire()和attempt()方法中可能会调用wait()等待其它线程释放锁。而release()在实现上进行了简化,直接释放锁,不管是否真的持有。所以,你可以对一个并没有acquire()的线程调用release()这也不会有什么问题。而由于release()不会抛出InterruptedException,所以我们可以在catch或finally子句中调用release()以保证获得的锁能够被正确释放。比如:


class X{ Sync gate; // ... public void m() {  try  {   gate.acquire();   // block until condition holds   try   {    // ... method body   }   finally { gate.release(); }  }  catch (InterruptedException ex) { // ... evasive action } }}


  Mutex是一个非重入的互斥锁。Mutex广泛地用在需要跨越方法的before/after类型的同步环境中。下面是Doug Lea的concurrent工具包中的Mutex的实现。

 

public class Mutex implements Sync{ /** The lock status **/ protected boolean inuse_ = false; public void acquire() throws InterruptedException {  if (Thread.interrupted()) throw new InterruptedException();//(1)  synchronized(this)  {   try   {    while (inuse_) wait();    inuse_ = true;   }   catch (InterruptedException ex)   {    //(2)    notify();    throw ex;   }  } } public synchronized void release() {  inuse_ = false;  notify(); } public boolean attempt(long msecs) throws InterruptedException {  if (Thread.interrupted()) throw new InterruptedException();  synchronized(this)  {   if (!inuse_)   {    inuse_ = true;    return true;   }   else if (msecs <= 0)    return false;   else   {    long waitTime = msecs;    long start = System.currentTimeMillis();    try    {     for (;;)     {      wait(waitTime);      if (!inuse_)      {       inuse_ = true;       return true;      }      else      {       waitTime = msecs - (System.currentTimeMillis() - start);       if (waitTime <= 0) // (3)        return false;       }     }    }    catch (InterruptedException ex)    {     notify();     throw ex;    }   }  } }}


  为什么要在acquire()和attempt(0方法的开始都要检查当前线程的中断标志呢?这是为了在当前线程已经被打断时,可以立即返回,而不会仍然在锁标志上等待。调用一个线程的interrupt()方法根据当前线程所处的状态,可能产生两种不同的结果:当线程在运行过程中被打断,则设置当前线程的中断标志为true;如果当前线程阻塞于wait()、sleep()、join(),则当前线程的中断标志被清空,同时抛出InterruptedException.所以在上面代码的位置(2)也捕获了InterruptedException,然后再次抛出InterruptedException.

  release()方法简单地重置inuse_标志,并通知其它线程。

  attempt()方法是利用Java的Object.wait(long)进行计时的,由于Object.wait(long)不是一个精确的时钟,所以attempt(long)方法也是一个粗略的计时。注意代码中位置(3),在超时时返回。

  Mutex是Sync的一个基本实现,除了实现了Sync接口中的方法外,并没有添加新的方法。所以,Mutex的使用和Sync的完全一样。在concurrent包的API中Doug给出了一个精细锁定的List的实现示例,我们这儿也给出,作为对Mutex和Sync使用的一个例子:


class Node{ Object item; Node next; Mutex lock = new Mutex(); // 每一个节点都持有一个锁 Node(Object x, Node n) {  item = x;  next = n; }}class List{ protected Node head; // 指向列表的头 // 使用Java的synchronized保护head域 // (我们当然可以使用Mutex,但是这儿似乎没有这样做的必要  protected synchronized Node getHead() { return head; } boolean search(Object x) throws InterruptedException {  Node p = getHead();  if (p == null) return false;  // (这儿可以更加紧凑,但是为了演示的清楚,各种情况都分别进行处理)  p.lock.acquire();  // Prime loop by acquiring first lock.  // (If the acquire fails due to  // interrupt, the method will throw  // InterruptedException now,  // so there is no need for any  // further cleanup.)  for (;;)  {   if (x.equals(p.item))   {    p.lock.release();    // 释放当前节点的锁    return true;   }   else   {    Node nextp = p.next;    if (nextp == null)    {     p.lock.release();     // 释放最后持有的锁     return false;    }    else    {     try     {      nextp.lock.acquire();      // 在释放当前锁之前获取下一个节点的锁     }     catch (InterruptedException ex)     {      p.lock.release();      // 如果获取失败,也释放当前的锁 throw ex;     }     p.lock.release();     // 释放上个节点的锁,现在已经持有新的锁了     p = nextp;    }   }  } } synchronized void add(Object x) {  // 使用synchronized保护head域  head = new Node(x, head); } // ... other similar traversal and update methods ...}


 

原创粉丝点击