声卡相关硬件知识

来源:互联网 发布:淘宝竞品表格 编辑:程序博客网 时间:2024/05/30 13:42

声卡是我们大家都比较熟悉的一种计算机配件。我们要用计算机处理声音信号,让计算机发出各种声音,用计算机播放有声的视频节目(VCD)、电子图书、教学光盘等都离不开声卡。有关声卡的参数和术语也是多种多样的,下面我就把其中一些主要的术语简单的为大家介绍一下,希望能够为那些想多了解声卡一些的朋友带来帮助。

波形声音从本质上讲,声音是一种连续的波,称为声波。要把声音信号存储到计算机之中去,必须把连续变化的波形信号(称为模拟信号)转换成为数字信号,因为计算机中只能存储数字信号。把模拟信号转换为数字信号(DAC)一般由对声音信号的采样和转换两步来完成。所谓采样就是采集声音模拟信号的样本,然后再转换成数字信号。计算机对声音采样能力的大小也用两个参数来衡量:采样频率和声音采样信号的位数(bit)。理解这两个参数十分重要,它们是声卡的主要指标,它们不仅影响到声音的播放质量,还与存储声音信号所需要的存储空间有直接的关系。

采样的位数采样位数可以理解为声卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实。我们首先要知道:电脑中的声音文件是用数字0和1来表示的。所以在电脑上录音的本质就是把模拟声音信号转换成数字信号。反之,在播放时则是把数字信号还原成模拟声音信号输出。声卡的位是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。声卡的位客观地反映了数字声音信号对输入声音信号描述的准确程度。8位代表2的8次方——256,16位则代表2的16次方——64K。比较一下,一段相同的音乐信息,16位声卡能把它分为64K个精度单位进行处理,而8位声卡只能处理256个精度单位,造成了较大的信号损失,最终的采样效果自然是无法相提并论的。

如今市面上所有的主流产品都是16位的声卡,而并非有些无知商家所鼓吹的64位乃至128位,他们将声卡的复音概念与采样位数概念混淆在了一起。如今功能最为强大的声卡系列——Sound Blaster Live!采用的EMU10K1芯片虽然号称可以达到32位,但是它只是建立在Direct Sound加速基础上的一种多音频流技术,其本质还是一块16位的声卡。应该说16位的采样精度对于电脑多媒体音频而言已经绰绰有余了。

采样频率当我们将声音储存至计算机中,必须经过一个录音转换的过程,转换些什么呢?就是把声音这种模拟讯号转成计算机可以辨识的数字讯号,在转换过程中将声波的波形以微分方式切开成许多单位,再把每个切开的声波以一个数值来代表该单位的一个量,以此方式完成取样的工作,而在单位时间内切开的数量便是所谓的取样频率,说明白些,就是模拟转数字时每秒对声波取样的数量,像是CD音乐的标准取样频率为44.1KHz,这也是目前声卡与计算机作业间最常用的取样频率。由此可知,在单位时间内取样的数量越多就会越接近原始的模拟讯号,在将数字讯号还原成模拟讯号时也就越能接近真实的原始声音;相对的越高的取样率,资料的大小就越大,反之则越小,当然也就越不真实了。当然,数字资料量的大小与声道数、取样率、音质分辨率等也有着密不可分的关系。

CD音乐的取样率为44.1KHz,而在计算机上的DVD音效则为48KHz (经声卡转换) ,一般的电台FM广播为32KHz,其它的音效则因不同的应用有不同的取样率,像是以Net Meeting之类的应用就不要使用高的取样率,否则在传递这些声音资料时会是一件十分痛苦的事。在一般的声卡上,取样频率至少要能提供22.05KHz、32KHz、44.1KHz以及48KHz,如果能够提供更多的选择会更好,不过目前的一般声卡最高的取样率都是在48KHz,若需要更高的取样率的话,就必须选择较为专业的录音卡了。

MIDI MIDI是Musical Instrument Digital Interface的简称,意为音乐设备数字接口。它是一种电子乐器之间以及电子乐器与电脑之间的统一交流协议。我们可以从广义上将为理解为电子合成器、电脑音乐的统称,包括协议、设备等等相关的含义。眼下在一些游戏软件和娱乐软件中我们经常可以发现很多以MID、RMI为扩展名的音乐文件,这些就是在电脑上最为常用的MIDI格式。MIDI文件是一种描述性的“音乐语言”,它将所要演奏的乐曲信息用字节表述下来。譬如“在某一时刻,使用什么乐器,以什么音符开始,以什么音调结束,加以什么伴奏”等等,所以MIDI文件非常小巧。

合成技术在声卡中声音的合成技术主要有两种:一种是FM(Frequency Modulation:频率调幅)类型,另一种是Wave Table(波表)类型。

FM合成技术:它是运用特定的算法来简单模拟真实乐器声音。其主要特点是电路简单、生产成本低,不需要大容量存储器支持即可模拟出多种声音。由于 FM是靠算法来合成某个声音,因此实现方法过于生硬、效果单一,所生成的声音与真实乐器产生的声音距离很大。很容易让人听出来是“电子音乐”。

Wave Table合成技术:它是利用数码拟合技术,将各种乐器的真实声音采样后将样本存储在声卡的EPROM中,当需要某种乐器的某个音色时,就到EPROM 中查询该乐器的有关数据,运算后经过声卡的芯片处理合成所需要的声音。Wave Table技术最大限度的读原始的声音效果并进行再现,使之更加真实。鉴于 Wave Table的出色表现,取代FM已是必然趋势,如今很多声卡普遍采用Wave Table结构。

声卡的复音数指在同一个时间内可以发出的声音数量。但是有一点很重要,这是指MIDI的乐器声音,而不是一般的声波;最大同时发声数可分为二个部分来看,一为硬件部分,这是指音效芯片最多可同时处理多少个MIDI乐器的讯号,一般来说,大概都是在24~32个声音,这对于普通的MIDI音乐来说应该是足够了,但是若是遇上较为复杂的MIDI乐曲,可能就会显得捉襟见肘,例如同时有数样乐器在进行和弦的伴奏,一个和弦至少是有三个声音 (这是理论值) 在同一时间发出,若是钢琴的和弦可能会同时出现四个以上的声音,而吉他则会出现五个以上的声音,再加上其它的乐器与打击乐器,复杂或多乐器的乐曲往往会出现有些时候会超过二、三十个以上的声音,这时候可能就会有一些声音被取消掉。

另一种就是属于软件的部分,目前的声卡大多会附赠一套软件音源,以提供声卡在播放MIDI乐曲时能够有较高品质的乐器声音,而这最大发声数是指软件音源所提供的处理讯号的能力,普通的软件音源至少也能有个64个同时发声数,最多的还可以提供至1024个同时发声数。虽然这是弥补硬件发声数不足的一个方法,也是比较省钱的方式,但是这对于系统的性能也是一大考验。虽然说最大发声数可以透过软件音源来弥补,但对于MIDI的爱好者来说,硬件的最大同时发声数是比软件的来得重要多了,这个数量当然是越大越好了。