ANDROID音频系统散记之四:4.0音频系统HAL初探

来源:互联网 发布:基金产品经理 知乎 编辑:程序博客网 时间:2024/05/17 01:19

ANDROID音频系统散记之四:4.0音频系统HAL初探

昨天(2011-11-15)发布了Android4.0的源码,今天download下来,开始挺进4.0时代。简单看了一下,发现音频系统方面与2.3的有较多地方不同,下面逐一描述。


一、代码模块位置


1、AudioFlinger

    frameworks/base/services/audioflinger/      +-- Android.mk      +-- AudioBufferProvider.h      +-- AudioFlinger.cpp      +-- AudioFlinger.h      +-- AudioMixer.cpp      +-- AudioMixer.h      +-- AudioPolicyService.cpp      +-- AudioPolicyService.h      +-- AudioResampler.cpp      +-- AudioResamplerCubic.cpp      +-- AudioResamplerCubic.h      +-- AudioResampler.h      +-- AudioResamplerSinc.cpp      +-- AudioResamplerSinc.h  

AudioFlinger相关代码,好像这部分与2.3相差不大,至少接口是兼容的。值得注意的是:2.3位于这里的还有AudioHardwareGeneric、AudioHardwareInterface、A2dpAudioInterface等一系列接口代码,现在都移除了。实际上,这些接口变更为legacy(有另外更好的实现方式,但也兼容之前的方法),取而代之的是要实现hardware/libhardware/include/hardware/audio.h提供的接口,这是一个较大的变化。

两种Audio Hardware HAL接口定义:
1/ legacy:hardware/libhardware_legacy/include/hardware_legacy/AudioHardwareInterface.h
2/ 非legacy:hardware/libhardware/include/hardware/audio.h

2、audio_hw

    hardware/libhardware_legacy/audio/      +-- A2dpAudioInterface.cpp      +-- A2dpAudioInterface.h      +-- Android.mk      +-- AudioDumpInterface.cpp      +-- AudioDumpInterface.h      +-- AudioHardwareGeneric.cpp      +-- AudioHardwareGeneric.h      +-- AudioHardwareInterface.cpp      +-- AudioHardwareStub.cpp      +-- AudioHardwareStub.h      +-- audio_hw_hal.cpp      +-- AudioPolicyCompatClient.cpp      +-- AudioPolicyCompatClient.h      +-- audio_policy_hal.cpp      +-- AudioPolicyManagerBase.cpp      +-- AudioPolicyManagerDefault.cpp      +-- AudioPolicyManagerDefault.h  
上面提及的AudioHardwareGeneric、AudioHardwareInterface、A2dpAudioInterface等都放到libhardware_legacy里。
事实上legacy也要封装成非legacy中的audio.h,确切的说需要一个联系legacy interface和not legacy interface的中间层,这里的audio_hw_hal.cpp就充当这样的一个角色了。因此,我们其实也可以把2.3之前的alsa_sound这一套东西也搬过来。
    hardware/libhardware/modules/audio/      +-- Android.mk      +-- audio_hw.c      +-- audio_policy.c  

这是一个stub(类似于2.3中的AudioHardwareStub),大多数函数只是简单的返回一个值,并没有实际操作,只是保证Android能得到一个audio hardware hal实例,从而启动运行,当然声音没有输出到外设的。在底层音频驱动或audio hardware hal还没有实现好的情况下,可以使用这个stub device,先让Android跑起来。
    device/samsung/tuna/audio/      +-- Android.mk      +-- audio_hw.c      +-- ril_interface.c      +-- ril_interface.h  

这是Samsung Tuna的音频设备抽象层,很有参考价值,计划以后就在它的基础上进行移植。它调用tinyalsa的接口,可见这个方案的底层音频驱动是alsa。

3、tinyalsa

    external/tinyalsa/      +-- Android.mk      +-- include      |   +-- tinyalsa      |       +-- asoundlib.h      +-- mixer.c      ##类alsa-lib的control,作用音频部件开关、音量调节等      +-- pcm.c        ##类alsa-lib的pcm,作用音频pcm数据回放录制      +-- README      +-- tinycap.c    ##类alsa_arecord      +-- tinymix.c    ##类alsa_amixer      +-- tinyplay.c   ##类alsa_aplay  

在2.3时代,Android还隐晦把它放在android2.3.1-gingerbread/device/samsung/crespo/libaudio,现在终于把alsa-lib一脚踢开,小三变正室了,正名tinyalsa。
这其实是历史的必然了,alsa-lib太过复杂繁琐了,我看得也很不爽;更重要的商业上面的考虑,必须移除被GNU GPL授权证所约束的部份,alsa-lib并不是个例。

注意:上面的hardware/libhardware_legacy/audio/、hardware/libhardware/modules/audio/、device/samsung/tuna/audio/是同层的。之一是legacy audio,用于兼容2.2时代的alsa_sound;之二是stub audio接口;之三是Samsung Tuna的音频抽象层实现。调用层次:AudioFlinger -> audio_hw -> tinyalsa。

二、Audio Hardware HAL加载


1、AudioFlinger

    //加载audio hardware hal      static int load_audio_interface(const char *if_name, const hw_module_t **mod,                                      audio_hw_device_t **dev)      {          int rc;                    //根据classid和if_name找到指定的动态库并加载,这里加载的是音频动态库,如libaudio.primary.tuna.so          rc = hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, if_name, mod);          if (rc)              goto out;                //加载好的动态库模块必有个open方法,调用open方法打开音频设备模块          rc = audio_hw_device_open(*mod, dev);          LOGE_IF(rc, "couldn't open audio hw device in %s.%s (%s)",                  AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc));          if (rc)              goto out;                return 0;            out:          *mod = NULL;          *dev = NULL;          return rc;      }            //音频设备接口,hw_get_module_by_class需要根据这些字符串找到相关的音频模块库      static const char *audio_interfaces[] = {          "primary", //主音频设备,一般为本机codec          "a2dp",    //a2dp设备,蓝牙高保真音频          "usb",     //usb-audio设备,这个东东我2.3就考虑要实现了,现在终于支持了      };      #define ARRAY_SIZE(x) (sizeof((x))/sizeof(((x)[0])))            // ----------------------------------------------------------------------------            AudioFlinger::AudioFlinger()          : BnAudioFlinger(),              mPrimaryHardwareDev(0), mMasterVolume(1.0f), mMasterMute(false), mNextUniqueId(1),              mBtNrecIsOff(false)      {      }            void AudioFlinger::onFirstRef()      {          int rc = 0;                Mutex::Autolock _l(mLock);                /* TODO: move all this work into an Init() function */          mHardwareStatus = AUDIO_HW_IDLE;                //打开audio_interfaces数组定义的所有音频设备          for (size_t i = 0; i < ARRAY_SIZE(audio_interfaces); i++) {              const hw_module_t *mod;              audio_hw_device_t *dev;                    rc = load_audio_interface(audio_interfaces[i], &mod, &dev);              if (rc)                  continue;                    LOGI("Loaded %s audio interface from %s (%s)", audio_interfaces[i],                   mod->name, mod->id);              mAudioHwDevs.push(dev); //mAudioHwDevs是一个Vector,存储已打开的audio hw devices                    if (!mPrimaryHardwareDev) {                  mPrimaryHardwareDev = dev;                  LOGI("Using '%s' (%s.%s) as the primary audio interface",                       mod->name, mod->id, audio_interfaces[i]);              }          }                mHardwareStatus = AUDIO_HW_INIT;                if (!mPrimaryHardwareDev || mAudioHwDevs.size() == 0) {              LOGE("Primary audio interface not found");              return;          }                //对audio hw devices进行一些初始化,如mode、master volume的设置          for (size_t i = 0; i < mAudioHwDevs.size(); i++) {              audio_hw_device_t *dev = mAudioHwDevs[i];                    mHardwareStatus = AUDIO_HW_INIT;              rc = dev->init_check(dev);              if (rc == 0) {                  AutoMutex lock(mHardwareLock);                        mMode = AUDIO_MODE_NORMAL;                  mHardwareStatus = AUDIO_HW_SET_MODE;                  dev->set_mode(dev, mMode);                  mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME;                  dev->set_master_volume(dev, 1.0f);                  mHardwareStatus = AUDIO_HW_IDLE;              }          }      }  
以上对AudioFlinger进行的分析,主要是通过hw_get_module_by_class()找到模块接口名字if_name相匹配的模块库,加载,然后audio_hw_device_open()调用模块的open方法,完成音频设备模块的初始化。

留意AudioFlinger的构造函数只有简单的私有变量的初始化操作了,把音频设备初始化放到onFirstRef(),Android终于改进了这一点,好的设计根本不应该把可能会失败的操作放到构造函数中。onFirstRef是RefBase类的一个虚函数,在构造sp的时候就会被调用。因此,在构造sp<AudioFlinger>的时候就会触发onFirstRef方法,从而完成音频设备模块初始化。

2、hw_get_module_by_class


我们接下来看看hw_get_module_by_class,实现在hardware/libhardware/ hardware.c中,它作用加载指定名字的模块库(.so文件),这个应该是用于加载所有硬件设备相关的库文件,并不只是音频设备。
    int hw_get_module_by_class(const char *class_id, const char *inst,                                 const struct hw_module_t **module)      {          int status;          int i;          const struct hw_module_t *hmi = NULL;          char prop[PATH_MAX];          char path[PATH_MAX];          char name[PATH_MAX];                if (inst)              snprintf(name, PATH_MAX, "%s.%s", class_id, inst);          else              strlcpy(name, class_id, PATH_MAX);                        //这里我们以音频库为例,AudioFlinger调用到这个函数时,          //class_id=AUDIO_HARDWARE_MODULE_ID="audio",inst="primary"(或"a2dp"或"usb")          //那么此时name="audio.primary"                /*          * Here we rely on the fact that calling dlopen multiple times on          * the same .so will simply increment a refcount (and not load          * a new copy of the library).          * We also assume that dlopen() is thread-safe.          */                /* Loop through the configuration variants looking for a module */          for (i=0 ; i<HAL_VARIANT_KEYS_COUNT+1 ; i++) {              if (i < HAL_VARIANT_KEYS_COUNT) {                    //通过property_get找到厂家标记如"ro.product.board=tuna",这时prop="tuna"                  if (property_get(variant_keys[i], prop, NULL) == 0) {                      continue;                  }                  snprintf(path, sizeof(path), "%s/%s.%s.so",                           HAL_LIBRARY_PATH2, name, prop); //#define HAL_LIBRARY_PATH2 "/vendor/lib/hw"                  if (access(path, R_OK) == 0) break;                        snprintf(path, sizeof(path), "%s/%s.%s.so",                           HAL_LIBRARY_PATH1, name, prop); //#define HAL_LIBRARY_PATH1 "/system/lib/hw"                  if (access(path, R_OK) == 0) break;              } else {                  snprintf(path, sizeof(path), "%s/%s.default.so", //如没有指定的库文件,则加载default.so,即stub-device                           HAL_LIBRARY_PATH1, name);                  if (access(path, R_OK) == 0) break;              }          }          //到这里,完成一个模块库的完整路径名称,如path="/system/lib/hw/audio.primary.tuna.so"          //如何生成audio.primary.tuna.so?请看相关的Android.mk文件,其中有定义LOCAL_MODULE := audio.primary.tuna                status = -ENOENT;          if (i < HAL_VARIANT_KEYS_COUNT+1) {              /* load the module, if this fails, we're doomed, and we should not try              * to load a different variant. */              status = load(class_id, path, module); //加载模块库          }                return status;      }  

load()函数不详细分析了,它通过dlopen加载库文件,然后dlsym找到hal_module_info的首地址。我们先看看hal_module_info的定义:
    /**      * Every hardware module must have a data structure named HAL_MODULE_INFO_SYM      * and the fields of this data structure must begin with hw_module_t      * followed by module specific information.      */      typedef struct hw_module_t {          /** tag must be initialized to HARDWARE_MODULE_TAG */          uint32_t tag;                /** major version number for the module */          uint16_t version_major;                /** minor version number of the module */          uint16_t version_minor;                /** Identifier of module */          const char *id;                /** Name of this module */          const char *name;                /** Author/owner/implementor of the module */          const char *author;                /** Modules methods */          struct hw_module_methods_t* methods;                /** module's dso */          void* dso;                /** padding to 128 bytes, reserved for future use */          uint32_t reserved[32-7];            } hw_module_t;            typedef struct hw_module_methods_t {          /** Open a specific device */          int (*open)(const struct hw_module_t* module, const char* id,                  struct hw_device_t** device);            } hw_module_methods_t;  

这个结构体很重要,注释很详细。dlsym拿到这个结构体的首地址后,就可以调用Modules methods进行设备模块的初始化了。设备模块中,都应该按照这个格式初始化好这个结构体,否则dlsym找不到它,也就无法调用Modules methods进行初始化了。

例如,在audio_hw.c中,它是这样定义的:
    static struct hw_module_methods_t hal_module_methods = {          .open = adev_open,      };            struct audio_module HAL_MODULE_INFO_SYM = {          .common = {              .tag = HARDWARE_MODULE_TAG,              .version_major = 1,              .version_minor = 0,              .id = AUDIO_HARDWARE_MODULE_ID,              .name = "Tuna audio HW HAL",              .author = "The Android Open Source Project",              .methods = &hal_module_methods,          },      };  

3、audio_hw


好了,经过一番周折,又dlopen又dlsym的,终于进入我们的audio_hw。这部分没什么好说的,按照hardware/libhardware/include/hardware/audio.h定义的接口实现就行了。这些接口全扔到一个结构体里面的,这样做的好处是:不必用大量的dlsym来获取各个接口函数的地址,只需找到这个结构体即可,从易用性和可扩充性来说,都是首选方式。

接口定义如下:
    struct audio_hw_device {          struct hw_device_t common;                /**          * used by audio flinger to enumerate what devices are supported by          * each audio_hw_device implementation.          *          * Return value is a bitmask of 1 or more values of audio_devices_t          */          uint32_t (*get_supported_devices)(const struct audio_hw_device *dev);                /**          * check to see if the audio hardware interface has been initialized.          * returns 0 on success, -ENODEV on failure.          */          int (*init_check)(const struct audio_hw_device *dev);                /** set the audio volume of a voice call. Range is between 0.0 and 1.0 */          int (*set_voice_volume)(struct audio_hw_device *dev, float volume);                /**          * set the audio volume for all audio activities other than voice call.          * Range between 0.0 and 1.0. If any value other than 0 is returned,          * the software mixer will emulate this capability.          */          int (*set_master_volume)(struct audio_hw_device *dev, float volume);                /**          * setMode is called when the audio mode changes. AUDIO_MODE_NORMAL mode          * is for standard audio playback, AUDIO_MODE_RINGTONE when a ringtone is          * playing, and AUDIO_MODE_IN_CALL when a call is in progress.          */          int (*set_mode)(struct audio_hw_device *dev, int mode);                /* mic mute */          int (*set_mic_mute)(struct audio_hw_device *dev, bool state);          int (*get_mic_mute)(const struct audio_hw_device *dev, bool *state);                /* set/get global audio parameters */          int (*set_parameters)(struct audio_hw_device *dev, const char *kv_pairs);                /*          * Returns a pointer to a heap allocated string. The caller is responsible          * for freeing the memory for it.          */          char * (*get_parameters)(const struct audio_hw_device *dev,                                   const char *keys);                /* Returns audio input buffer size according to parameters passed or          * 0 if one of the parameters is not supported          */          size_t (*get_input_buffer_size)(const struct audio_hw_device *dev,                                          uint32_t sample_rate, int format,                                          int channel_count);                /** This method creates and opens the audio hardware output stream */          int (*open_output_stream)(struct audio_hw_device *dev, uint32_t devices,                                    int *format, uint32_t *channels,                                    uint32_t *sample_rate,                                    struct audio_stream_out **out);                void (*close_output_stream)(struct audio_hw_device *dev,                                      struct audio_stream_out* out);                /** This method creates and opens the audio hardware input stream */          int (*open_input_stream)(struct audio_hw_device *dev, uint32_t devices,                                   int *format, uint32_t *channels,                                   uint32_t *sample_rate,                                   audio_in_acoustics_t acoustics,                                   struct audio_stream_in **stream_in);                void (*close_input_stream)(struct audio_hw_device *dev,                                     struct audio_stream_in *in);                /** This method dumps the state of the audio hardware */          int (*dump)(const struct audio_hw_device *dev, int fd);      };      typedef struct audio_hw_device audio_hw_device_t;  

注:这是比较标准的C接口设计方法了,但是个人感觉还是用C++比较好,直观易读。2.3之前都是用C++实现这些接口设计的,到了4.0,不知道为何采纳用C?不会理由是做底层的不懂C++吧?!

三、Audio Hardware HAL的legacy实现


之前提到两种Audio Hardware HAL接口定义:
1/ legacy:hardware/libhardware_legacy/include/hardware_legacy/AudioHardwareInterface.h
2/ 非legacy:hardware/libhardware/include/hardware/audio.h
前者是2.3及之前的音频设备接口定义,后者是4.0的接口定义。

为了兼容以前的设计,4.0实现一个中间层:hardware/libhardware_legacy/audio/audio_hw_hal.cpp,结构与其他的audio_hw.c大同小异,差别在于open方法:
    static int legacy_adev_open(const hw_module_t* module, const char* name,                                  hw_device_t** device)      {          ......                ladev->hwif = createAudioHardware();          if (!ladev->hwif) {              ret = -EIO;              goto err_create_audio_hw;          }                ......      }  

看到那个熟悉的createAudioHardware()没有?这是以前我提到的Vendor Specific Audio接口,然后新的接口再调用ladev->hwif的函数就是了。
因此老一套的alsa-lib、alsa-utils和alsa_sound也可以照搬过来,这里的文件被编译成静态库的,因此你需要修改alsa_sound里面的Android.mk文件,链接这个静态库。还有alsa_sound的命名空间原来是“android”,现在需要改成“android_audio_legacy”。

四、a2dp Audio HAL的实现


4.0的a2dp audio hal放到bluez里实现了,我找了好一会才找到:
external/Bluetooth/bluez/audio/android_audio_hw.c
大致与上面提到的audio_hw.c类似,因为都是基于audio.h定义的接口来实现的。
如果需要编译这个库,须在BoardConfig.mk里定义:
BOARD_HAVE_BLUETOOTH := true

开始还提到现在支持3种audio设备了,分别是primary、a2dp和usb。目前剩下usb audio hal我没有找到,不知是否需要自己去实现?其实alsa-driver都支持大部分的usb-audio设备了,因此上层也可调用tinyalsa的接口,就像samsung tuna的audio_hw.c那样。

五、音质改进???


可使用audio echo cancel和更好的resampler(SRC)???
原创粉丝点击