Android在标准linux基础上对休眠唤醒的实现(二)

来源:互联网 发布:天谕烈体型捏脸数据 编辑:程序博客网 时间:2024/05/22 00:45

三、kernel层源码解析 - wakelock的重要地位

wakelockandroid的休眠唤醒机制中扮演着及其重要的角色,主要源码位于文件:kernel/kernel/power/wakelock.ckernel/include/linux/wakelock.h中。

 

wakelocks_init()函数所做的工作是整个wakelock可以工作起来的基础,所有这里先说说这个函数。

static int __initwakelocks_init(void)

{

      int ret;

      int i;

 

      for (i = 0; i < ARRAY_SIZE(active_wake_locks); i++)

             INIT_LIST_HEAD(&active_wake_locks[i]);

      // 初始化active_wake_locks数组中的两个类型锁链表: WAKE_LOCK_SUSPEND,WAKE_LOCK_IDLE

 

#ifdef CONFIG_WAKELOCK_STAT       // defined

      wake_lock_init(&deleted_wake_locks, WAKE_LOCK_SUSPEND,

                    "deleted_wake_locks");

      // 初始化wakelock deleted_wake_locks,同时将其加入到非活动锁链表中

#endif

      wake_lock_init(&main_wake_lock, WAKE_LOCK_SUSPEND, "main");

      wake_lock_init(&sys_sync_wake_lock, WAKE_LOCK_SUSPEND, "sys_sync");

      wake_lock(&main_wake_lock);

      wake_lock_init(&unknown_wakeup, WAKE_LOCK_SUSPEND, "unknown_wakeups");

      // 初始化wakelock: main, sys_sync, unknown_wakeups,同时将其加入到非活动锁链表中

      // main_wake_lock加锁

      

      ret = platform_device_register(&power_device);

      if (ret) {

             pr_err("[wakelocks_init]: platform_device_register failed/n");

             goto err_platform_device_register;

      }

      ret = platform_driver_register(&power_driver);

      if (ret) {

             pr_err("[wakelocks_init]: platform_driver_register failed/n");

             goto err_platform_driver_register;

      }

 

      // 新建工作队列和工作者内核线程: sys_sync_work_queue, fs_sync

      //                                                      suspend_work_queue, suspend

      sys_sync_work_queue = create_singlethread_workqueue("fs_sync");

      if (sys_sync_work_queue == NULL) {

             pr_err("[wakelocks_init] fs_sync workqueue create failed/n");

      }

 

      suspend_work_queue = create_singlethread_workqueue("suspend");

      if (suspend_work_queue == NULL) {

             ret = -ENOMEM;

             goto err_suspend_work_queue;

      }

 

#ifdef CONFIG_WAKELOCK_STAT

      proc_create("wakelocks", S_IRUGO, NULL, &wakelock_stats_fops);

      // 创建proc接口

#endif

 

      return 0;

 

err_suspend_work_queue:

      platform_driver_unregister(&power_driver);

err_platform_driver_register:

      platform_device_unregister(&power_device);

err_platform_device_register:

      wake_lock_destroy(&unknown_wakeup);

      wake_lock_destroy(&main_wake_lock);

#ifdef CONFIG_WAKELOCK_STAT

      wake_lock_destroy(&deleted_wake_locks);

#endif

      return ret;

}

 

可以看到该初始化函数中新建了几个wakelock: deleted_wake_locksmain_wake_locksys_sync_wake_lockunknown_wakeup,他们全部都是WAKE_LOCK_SUSPEND类型的wakelock,说到这里不得不提到wakelock的两种类型了:

1.     WAKE_LOCK_SUSPEND –这种锁如果被某个task持有,那么系统将无法进入休眠。

2.     WAKE_LOCK_IDLE –这种锁不会影响到系统进入休眠,但是如果这种锁被持有,那么系统将无法进入idle空闲模式。

 

不过常用的所类型还是WAKE_LOCK_SUSPEND,包括userwakelock.c提供给用户空间的新建wakelock的接口,都是建立的第一种锁。另外系统为了分开管理这两种不同类型的锁,建立了两个链表来统一链接不同类型的锁:active_wake_locks[],这个是具有两个链表头的数组,元素0是挂接WAKE_LOCK_SUSPEND类型的锁,而元素1就是挂接WAKE_LOCK_IDLE类型的wakelock了。

 

      接着上面说,这个初始化函数新建这些锁之后,直接将主锁(main_wake_lock)给上锁了,其余都是非锁状态。新建wakelock使用函数wake_lock_init(),该函数设置锁的名字,类型,最后将新建的锁挂接到一个专门链接这些非锁状态的链表inactive_locks(新建的wakelock初期都是出于非锁状态的,除非显示调用函数wake_lock来上锁)。接着如果使用函数wake_lock()来给特定的wakelock上锁的话,会将该锁从链表inactive_locks上移动到对应类型的专用链表上active_wake_locks[type]上。

      

      wakelock有两种形式的锁:超时锁和非超时锁,这两种形式的锁都是使用函数wake_lock_init()来初始化,只是在上锁的时候会有一点点差别,超时锁使用函数wake_lock_timeout(),而非超时锁使用函数wake_lock(),这个两个函数会最终调用到同一个函数wake_lock_internal(),该函数依靠传入的不同参数来选择不同的路径来工作。值得注意的是,非超时锁必须手工解锁,否则系统永远不能进入睡眠。下面是wake_lock_internal()函数的片段:

      if (!(lock->flags & WAKE_LOCK_ACTIVE))

             lock->flags |= WAKE_LOCK_ACTIVE;// wakelock状态为inactive,则更改为active

      

      if (has_timeout) { // wake_lock_timeout()会传入1

             if (wakelock_debug_mask & DEBUG_WAKE_LOCK)

                    pr_info("[wake_lock_internal]: %s, type %d, timeout %ld.%03lu/n",

                           lock->name, type, timeout / HZ,

                           (timeout % HZ) * MSEC_PER_SEC / HZ);

             lock->expires = jiffies + timeout;       //设置超时时间

             lock->flags |= WAKE_LOCK_AUTO_EXPIRE;       //超时锁标志

             list_add_tail(&lock->link, &active_wake_locks[type]);

      }

   // acquire a non-timeout wakelock添加一个非超时锁

      else {      // wake_lock ()会传入0

             if (wakelock_debug_mask & DEBUG_WAKE_LOCK)

                    pr_info("[wake_lock_internal]: %s, type %d/n", lock->name, type);

             lock->expires = LONG_MAX;    //设置成超时时间最大值

             lock->flags &= ~WAKE_LOCK_AUTO_EXPIRE; // 非超时锁标志

             list_add(&lock->link, &active_wake_locks[type]);

             // 将刚刚设置的非超时锁加到对应类型的活动锁链表中

      }

      

      解锁的时候,这两种形式的锁所使用函数都是一样了:wake_unlock(),该函数中会首先作如下操作:

      lock->flags &= ~(WAKE_LOCK_ACTIVE | WAKE_LOCK_AUTO_EXPIRE);

      // 清除锁活动标志和自动超时标志

      list_del(&lock->link);   //从锁对应的活动链表上摘除

      list_add(&lock->link, &inactive_locks);   

//unlock的锁挂接到非活动链表inactive_locks

 

前面已经说了只有类型为WAKE_LOCK_SUSPENDwakelock被上锁才会阻止系统进入suspend,那么也就是说只要链表active_wake_locks[WAKE_LOCK_SUSPEND]NULL,那么系统就可以执行suspend的流程了。Androidlinux的改造,让其可以在三种情况下进入linux的标准suspend的流程:

1.              wake_unlock(),这个应该是最容易想到的,只要系统有对WAKE_LOCK_SUSPEND类型的wakelock解锁的动作,都有可能会进入suspend流程开始休眠,为什么是有可能呢?因为可能还有超时锁没有被超时解锁。下面看一下代码片段:

void wake_unlock(struct wake_lock *lock)

{

      

      if (type == WAKE_LOCK_SUSPEND) // 貌似只在处理这个类型的wakelock

   {

             long has_lock = has_wake_lock_locked(type);

             // 这个函数蛮重要,它来检查type类型的链表上是否还有锁被上锁了。

       // 其返回值如果是0,说明没有该类型的锁被持有了;返回非0表明就是这个类型的活动链表上还存在超时锁但是没有非超时锁了,这个返回值就是当前时间距离最后超时的锁超时时间的jiffies值;如果返回-1,那表明还有该类型的非超时锁被持有。

       if (wakelock_debug_mask & DEBUG_WAKE_LOCK)

           pr_info("[wake_unlock]: has_lock = 0x%x/n" , has_lock);       

             if (has_lock > 0) {

                    if (wakelock_debug_mask & DEBUG_EXPIRE)

                           pr_info("[wake_unlock]: %s, start expire timer, "

                                  "%ld/n", lock->name, has_lock);

                    mod_timer(&expire_timer, jiffies + has_lock);

//修改定时器的超时值并add该定时器

             }

             else // 已经没有超时锁了

             {

                    if (del_timer(&expire_timer))           // 删除定时器

                           if (wakelock_debug_mask & DEBUG_EXPIRE)

                                  pr_info("[wake_unlock]: %s, stop expire "

                                         "timer/n", lock->name);

                    if (has_lock == 0)

// !=0,表明还有该类型的非超时锁被持有,现在还不能进入suspend

                    {

                     pr_info("[wake_unlock]: (%s) suspend_work_queue suspend_work/n" , lock->name);

                           queue_work(suspend_work_queue, &suspend_work);

                           // 提交suspend的工作项,开始执行标准linuxsuspend流程

                    }    

             }

             

      }

      spin_unlock_irqrestore(&list_lock, irqflags);

}

 

2.            超时锁超时之后,定时器的回调函数会执行会查看是否有其他的wakelock,如果没有, 就在这里让系统进入睡眠。

static voidexpire_wake_locks(unsigned long data)

{

      long has_lock;

      unsigned long irqflags;

      if (debug_mask & DEBUG_EXPIRE)

             pr_info("expire_wake_locks: start/n");

      spin_lock_irqsave(&list_lock, irqflags);

      if (debug_mask & DEBUG_SUSPEND)

             print_active_locks(WAKE_LOCK_SUSPEND);

      has_lock = has_wake_lock_locked(WAKE_LOCK_SUSPEND);

      if (debug_mask & DEBUG_EXPIRE)

             pr_info("expire_wake_locks: done, has_lock %ld/n", has_lock);

      if (has_lock == 0)

//如果没有SUSPEND类型的wakelock处于active,那么将调用suspend

             queue_work(suspend_work_queue, &suspend_work);

      spin_unlock_irqrestore(&list_lock, irqflags);

}

      static DEFINE_TIMER(expire_timer, expire_wake_locks, 0, 0);

列出以下一个重要的函数源码:

static longhas_wake_lock_locked(int type)

{

      struct wake_lock *lock, *n;

      long max_timeout = 0;

 

      BUG_ON(type >= WAKE_LOCK_TYPE_COUNT);

      list_for_each_entry_safe(lock, n, &active_wake_locks[type], link) {

             if (lock->flags & WAKE_LOCK_AUTO_EXPIRE) {

                    long timeout = lock->expires - jiffies;

                    if (timeout <= 0)

                           expire_wake_lock(lock);

                    else if (timeout > max_timeout)

                           max_timeout = timeout;

             } else

                    return -1;

      }

      return max_timeout;

}

 

3.              这个可能有人觉得匪夷所思,就是在wake_lock{_ _timeout}()函数中,调用了内部函数wake_lock_internal()。这里只有在对超时锁上锁的时候才有可能进入休眠,如果对一个费超时锁上锁的话,那么就没有必要去检查活动链表了。

static void wake_lock_internal(

      struct wake_lock *lock, long timeout, int has_timeout)

{

if (type == WAKE_LOCK_SUSPEND) {

             current_event_num++;

#ifdef CONFIG_WAKELOCK_STAT

             if (lock == &main_wake_lock)

                    update_sleep_wait_stats_locked(1);

             else if (!wake_lock_active(&main_wake_lock))

                    update_sleep_wait_stats_locked(0);

#endif

             if (has_timeout)   //超时锁的时候传进来的是1

                    expire_in = has_wake_lock_locked(type);

                    // 检查当前锁类型链表上是否还有锁处于active的状态,无返回0

             else

                    expire_in = -1;

//如果是非超时锁的话,这里直接赋值-1,省去了活动链表检查步骤了

             if (expire_in > 0) {

                    if (debug_mask & DEBUG_EXPIRE)

                           pr_info("wake_lock: %s, start expire timer, "

                                  "%ld/n", lock->name, expire_in);

                    // modify the time wakelock is expired

                    mod_timer(&expire_timer, jiffies + expire_in);

             } else {

                    if (del_timer(&expire_timer))

                           if (debug_mask & DEBUG_EXPIRE)

                                  pr_info("wake_lock: %s, stop expire timer/n",

                                         lock->name);

                    if (expire_in == 0) // 没有锁处于active状态后,准备调用suspend

                    {

                     pr_info("[wake_lock]: suspend_work_queue suspend_work/n ");

                           queue_work(suspend_work_queue, &suspend_work);

                    }

             }

      }

      spin_unlock_irqrestore(&list_lock, irqflags);

}

 

下面是suspend的工作项,经过上面三种情况的检查,ok之后将会提交该工作项给工作队列suspend_work_queue,如下:

static voidsuspend(struct work_struct *work)

{

      int ret;

      int entry_event_num;

 

   // there are still some wakelock

      if (has_wake_lock(WAKE_LOCK_SUSPEND)) {

             if (wakelock_debug_mask & DEBUG_SUSPEND)

                    pr_info("[suspend]: abort suspend/n");

             return;

      }

 

      entry_event_num = current_event_num;

      sys_sync();

      if (debug_mask & DEBUG_SUSPEND)

             pr_info("suspend: enter suspend/n");

      ret = pm_suspend(requested_suspend_state);

      // requested_suspend_state这个全局变量在函数request_suspend_state()中被设置,也就是执行了eraly suspend或者late resume之后,主要是为suspend保留请求的省电状态。

      if (debug_mask & DEBUG_EXIT_SUSPEND) {

             struct timespec ts;

             struct rtc_time tm;

             getnstimeofday(&ts);

             rtc_time_to_tm(ts.tv_sec, &tm);

             pr_info("suspend: exit suspend, ret = %d "

                    "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)/n", ret,

                    tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,

                    tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);

      }

      if (current_event_num == entry_event_num) {

             if (debug_mask & DEBUG_SUSPEND)

                    pr_info("suspend: pm_suspend returned with no event/n");

             wake_lock_timeout(&unknown_wakeup, HZ / 2);

      }

}

static DECLARE_WORK(suspend_work, suspend);

 

@kernel/kernel/power/suspend.c

intpm_suspend(suspend_state_t state)

{

      if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX)

             return enter_state(state);

             // 标准linuxsuspend流程函数

return -EINVAL;

}

EXPORT_SYMBOL(pm_suspend);

 

Wakelock的机制被文件userwakelock.c中的code封装成了sys的接口sys/power/wake_locksys/power/wake_unlock文件,那么上层如果需要新建wakelock或者注销wakelock,或者是解锁wakelock,都是操作这两个sys接口文件。

原创粉丝点击