9G-STM32-移植FATFS的NANDFLASH驱动

来源:互联网 发布:单片机的最小系统简述 编辑:程序博客网 时间:2024/05/22 05:14

一,建立工程FATFS源码
 1,在http://elm-chan.org/fsw/ff/00index_e.html上下载ff007c.zip,并把ff007c.zip里面的
 src文件夹复制到D:\works\EK-STM3210E-UCOSII下,并改名为Fatfs;
 2,在IDE工程中右击选择“Add Group”建立“FATFS”文件组,并在“FATFS”上右击选择“Add Files”添加
 D:\works\EK-STM3210E-UCOSII\Fatfs下的C文件;
 3,把D:\works\EK-STM3210E-UCOSII\Fatfs文件夹目录添加到项目头文件搜索路径中,如:
 $PROJ_DIR$\..\..\Fatfs
 
二,移植NANDFLASH驱动接口
 1,把stm32f10x_stdperiph_lib_v3.0.0\Project\Examples\FSMC\NAND下的fsmc_nand.c复制到
 D:\works\EK-STM3210E-UCOSII\Drivers下,并加入到工程的DRV文件组;
 2,把stm32f10x_stdperiph_lib_v3.0.0\Project\Examples\FSMC\NAND下的fsmc_nand.h复制到
 D:\works\EK-STM3210E-UCOSII\Include下;
 3,在fsmc_nand.c前添加上#include "stm32f10x_conf.h",并把系统中的 "stm32f10x_conf.h"
 文件的/* #include "stm32f10x_fsmc.h" */注释打开;

三,修改FATFS的配置文件
 1,把D:\works\EK-STM3210E-UCOSII\Fatfs下的ff.h中的宏定义:
 

 #define _USE_MKFS 0  #define _CODE_PAGE 932  #define _FS_RPATH 0  #define _MAX_SS  512  修改为:  #define _USE_MKFS 1  #define _CODE_PAGE 936  #define _MAX_SS  2048  #define _FS_RPATH 1


 

 2,把D:\works\EK-STM3210E-UCOSII\Fatfs下的integer.h的宏定义:
 

 typedef enum { FALSE = 0, TRUE } BOOL;  修改为:  typedef bool BOOL;//typedef enum { FALSE = 0, TRUE } BOOL;


 

四,修改FATFS的DISK/IO接口
 1,把diskio.c复制后改名为nandio.c替换掉工程中的diskio.c,并添加到EWARM的工程中的
  “FATFS”文件组;
 2,媒介初始化直接返回正常的0:
 

 DSTATUS disk_initialize (BYTE drv)  {  return 0;}


 

 3,媒介状态查询直接返回正常的0:
  

DSTATUS disk_status (BYTE drv)  {  return 0;}


 

 4,取系统系统直接返回0(自己可以按格式修改为真实时间):

  DWORD get_fattime (void)  {  return 0;}


 

 5,媒介控制接口:
  

DRESULT disk_ioctl (BYTE drv,BYTE ctrl, void *buff)  {   DRESULT res = RES_OK;   uint32_t result;      if (drv){ return RES_PARERR;}         switch(ctrl)      {       case CTRL_SYNC:           break;    case GET_BLOCK_SIZE:           *(DWORD*)buff = NAND_BLOCK_SIZE;           break;    case GET_SECTOR_COUNT:           *(DWORD*)buff = (((NAND_MAX_ZONE/2) * NAND_ZONE_SIZE) * NAND_BLOCK_SIZE);           break;    case GET_SECTOR_SIZE:           *(WORD*)buff = NAND_PAGE_SIZE;           break;       default:           res = RES_PARERR;           break;   }      return res;  } 


 

6,媒介多扇区读接口:
  

DRESULT disk_read (BYTE drv,BYTE *buff,DWORD sector,BYTE count)  {   uint32_t result;      if (drv || !count){  return RES_PARERR;}   result = FSMC_NAND_ReadSmallPage(buff, sector, count);                                                     if(result & NAND_READY){  return RES_OK; }      else { return RES_ERROR;  }  }


 

 7,媒介多扇区写接口:
 

 #if _READONLY == 0  DRESULT disk_write (BYTE drv,const BYTE *buff,DWORD sector,BYTE count)  {   uint32_t result;   uint32_t BackupBlockAddr;   uint32_t WriteBlockAddr;   uint16_t IndexTmp = 0;   uint16_t OffsetPage;     /* NAND memory write page at block address*/   WriteBlockAddr = (sector/NAND_BLOCK_SIZE);   /* NAND memory backup block address*/   BackupBlockAddr = (WriteBlockAddr + (NAND_MAX_ZONE/2)*NAND_ZONE_SIZE);   OffsetPage = sector%NAND_BLOCK_SIZE;        if (drv || !count){  return RES_PARERR;}      /* Erase the NAND backup Block */      result = FSMC_NAND_EraseBlock(BackupBlockAddr*NAND_BLOCK_SIZE);        /* Backup the NAND Write Block to High zone*/     for (IndexTmp = 0; IndexTmp < NAND_BLOCK_SIZE; IndexTmp++ )   {    FSMC_NAND_MoveSmallPage (WriteBlockAddr*NAND_BLOCK_SIZE+IndexTmp,BackupBlockAddr*NAND_BLOCK_SIZE+IndexTmp);   }     /* Erase the NAND Write Block */   result = FSMC_NAND_EraseBlock(WriteBlockAddr*NAND_BLOCK_SIZE);        /*return write the block  with modify*/   for (IndexTmp = 0; IndexTmp < NAND_BLOCK_SIZE; IndexTmp++ )   {    if((IndexTmp>=OffsetPage)&&(IndexTmp < (OffsetPage+count)))    {     FSMC_NAND_WriteSmallPage((uint8_t *)buff, WriteBlockAddr*NAND_BLOCK_SIZE+IndexTmp, 1);     buff = (uint8_t *)buff + NAND_PAGE_SIZE;       }    else    {          FSMC_NAND_MoveSmallPage (BackupBlockAddr*NAND_BLOCK_SIZE+IndexTmp,WriteBlockAddr*NAND_BLOCK_SIZE+IndexTmp);       }   }            if(result == NAND_READY){   return RES_OK;}      else {   return RES_ERROR;}  }  #endif /* _READONLY */


 

五,调用接口及测试代码
 1,调用接口,先初始化FSMC和NANDFLASH:
  

//NANDFLASH HY27UF081G2A-TPCB  #define NAND_HY_MakerID     0xAD  #define NAND_HY_DeviceID    0xF1    /* Configure the NAND FLASH */  void NAND_Configuration(void)  {   NAND_IDTypeDef NAND_ID;      /* Enable the FSMC Clock */   RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);         /* FSMC Initialization */   FSMC_NAND_Init();     /* NAND read ID command */   FSMC_NAND_ReadID(&NAND_ID);       /* Verify the NAND ID */   if((NAND_ID.Maker_ID == NAND_ST_MakerID) && (NAND_ID.Device_ID == NAND_ST_DeviceID))   {          printf("ST NANDFLASH");   }      else      if((NAND_ID.Maker_ID == NAND_HY_MakerID) && (NAND_ID.Device_ID == NAND_HY_DeviceID))   {          printf("HY27UF081G2A-TPCB");   }   printf(" ID = 0x%x%x%x%x \n\r",NAND_ID.Maker_ID,NAND_ID.Device_ID,NAND_ID.Third_ID,NAND_ID.Fourth_ID);  } 


 

 

2,然后对媒介格式化,创建读写文件:
  

void test_fatfs(void)  {      FATFS fs;   FIL fl;   FATFS *pfs;   DWORD clust;   unsigned int r,w,i;   FRESULT  res;     // NF_CHKDSK(0,1024);   display_page(0,0);     // for mount    res=f_mount(0,&fs);   printf("f_mount=%x \n\r",res);     // for format   //res=f_mkfs(0,1,2048);  //MUST Format for New NANDFLASH !!!   //printf("f_mkfs=%x \n\r",res);    // for   pfs=&fs;   res = f_getfree("/", &clust, &pfs);   printf("f_getfree=%x \n\r",res);   printf("\n\r%lu MB total drive space."       "\n\r%lu MB available.\n\r",     (DWORD)(pfs->max_clust - 2) * pfs->csize /2/1024,     clust * pfs->csize /2/1024);     // for read      res=f_open(&fl,"/test2.dat",FA_OPEN_EXISTING | FA_READ);      printf("f_open=%x \n\r",res);   for(i=0;i<2;i++)   {    for(r = 0; r < NAND_PAGE_SIZE; r++)    {     RxBuffer[r]= 0xff;    }        res=f_read(&fl,RxBuffer,NAND_PAGE_SIZE,&r);    printf("f_read=%x \n\r",res);    if(res || r == 0)break;    for(r = 0; r < NAND_PAGE_SIZE; r++)       {           printf("D[%08x]=%02x ",(i*NAND_PAGE_SIZE+r),RxBuffer[r]);           if((r%8)==7)           {printf("\n\r");}       }         }   f_close(&fl);  // for write   res=f_open(&fl,"/test2.dat",FA_CREATE_ALWAYS | FA_WRITE);   printf("f_open=%x \n\r",res);   for(i=0;i<2;i++)   {    for(w = 0; w < NAND_PAGE_SIZE; w++)    {     TxBuffer[w]=((w<<0)&0xff);    }          res=f_write(&fl,TxBuffer,NAND_PAGE_SIZE,&w);          printf("f_write=%x \n\r",res);    if(res || w       }   f_close(&fl);     // for umount   f_mount(0,NULL);  }


 

六,编写NANDFLASH接口
 1,fsmc_nand.c文件:
 

 /* Includes ------------------------------------------------------------------*/  #include "fsmc_nand.h"  #include "stm32f10x_conf.h"    /** @addtogroup StdPeriph_Examples    * @{    */    /** @addtogroup FSMC_NAND    * @{    */    /* Private typedef -----------------------------------------------------------*/  /* Private define ------------------------------------------------------------*/    #define FSMC_Bank_NAND     FSMC_Bank2_NAND  #define Bank_NAND_ADDR     Bank2_NAND_ADDR  #define Bank2_NAND_ADDR    ((uint32_t)0x70000000)    /* Private macro -------------------------------------------------------------*/  /* Private variables ---------------------------------------------------------*/  /* Private function prototypes -----------------------------------------------*/  /* Private functions ---------------------------------------------------------*/    /**    * @brief  Configures the FSMC and GPIOs to interface with the NAND memory.    *   This function must be called before any write/read operation    *   on the NAND.    * @param  None    * @retval : None    */  void FSMC_NAND_Init(void)  {    GPIO_InitTypeDef GPIO_InitStructure;    FSMC_NANDInitTypeDef FSMC_NANDInitStructure;    FSMC_NAND_PCCARDTimingInitTypeDef  p;       RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOE |                           RCC_APB2Periph_GPIOF | RCC_APB2Periph_GPIOG, ENABLE);     /*-- GPIO Configuration ------------------------------------------------------*/  /* CLE, ALE, D0->D3, NOE, NWE and NCE2  NAND pin configuration  */    GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_14 | GPIO_Pin_15 |                                    GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_4 | GPIO_Pin_5 |                                   GPIO_Pin_7;                                     GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;      GPIO_Init(GPIOD, &GPIO_InitStructure);    /* D4->D7 NAND pin configuration  */     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10;      GPIO_Init(GPIOE, &GPIO_InitStructure);      /* NWAIT NAND pin configuration */    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;              GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;      GPIO_Init(GPIOD, &GPIO_InitStructure);    /* INT2 NAND pin configuration */     GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;              GPIO_Init(GPIOG, &GPIO_InitStructure);      /*-- FSMC Configuration ------------------------------------------------------*/    p.FSMC_SetupTime = 0x1;    p.FSMC_WaitSetupTime = 0x3;    p.FSMC_HoldSetupTime = 0x2;    p.FSMC_HiZSetupTime = 0x1;      FSMC_NANDInitStructure.FSMC_Bank = FSMC_Bank2_NAND;    FSMC_NANDInitStructure.FSMC_Waitfeature = FSMC_Waitfeature_Enable;    FSMC_NANDInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_8b;    FSMC_NANDInitStructure.FSMC_ECC = FSMC_ECC_Enable;    FSMC_NANDInitStructure.FSMC_ECCPageSize = FSMC_ECCPageSize_512Bytes;    FSMC_NANDInitStructure.FSMC_TCLRSetupTime = 0x00;    FSMC_NANDInitStructure.FSMC_TARSetupTime = 0x00;    FSMC_NANDInitStructure.FSMC_CommonSpaceTimingStruct = &p;    FSMC_NANDInitStructure.FSMC_AttributeSpaceTimingStruct = &p;      FSMC_NANDInit(&FSMC_NANDInitStructure);      /* FSMC NAND Bank Cmd Test */    FSMC_NANDCmd(FSMC_Bank2_NAND, ENABLE);  }     /**    * @brief  Reads NAND memory's ID.    * @param  NAND_ID: pointer to a NAND_IDTypeDef structure which will hold    *                  the Manufacturer and Device ID.     * @retval : None    */  void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID)  {    uint32_t data = 0;      /* Send Command to the command area */      *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA)  = NAND_CMD_READID;    /* Send Address to the address area */    *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = NAND_CMD_IDADDR;       /* Sequence to read ID from NAND flash */      data = *(__IO uint32_t *)(Bank_NAND_ADDR | DATA_AREA);       NAND_ID->Maker_ID   = DATA_1st_CYCLE (data);     NAND_ID->Device_ID  = DATA_2nd_CYCLE (data);     NAND_ID->Third_ID   = DATA_3rd_CYCLE (data);     NAND_ID->Fourth_ID  = DATA_4th_CYCLE (data);   }  /**    * @brief  This routine is for move one 2048 Bytes Page size to an other 2048 Bytes Page.    *         the copy-back program is permitted just between odd address pages or even address pages.    * @param  SourcePageAddress: Source page address    * @param  TargetPageAddress: Target page address    * @retval : New status of the NAND operation. This parameter can be:    *              - NAND_TIMEOUT_ERROR: when the previous operation generate    *                a Timeout error    *              - NAND_READY: when memory is ready for the next operation    *                And the new status of the increment address operation. It can be:    *              - NAND_VALID_ADDRESS: When the new address is valid address    *              - NAND_INVALID_ADDRESS: When the new address is invalid address     */  uint32_t FSMC_NAND_MoveSmallPage(uint32_t SourcePageAddress, uint32_t TargetPageAddress)  {    uint32_t status = NAND_READY ;    uint32_t data = 0xff;        /* Page write command and address */      *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE0;        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(SourcePageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(SourcePageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(SourcePageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(SourcePageAddress);        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE1;        while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );         *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE2;        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(TargetPageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(TargetPageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(TargetPageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(TargetPageAddress);        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_MOVE3;        while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );          /* Check status for successful operation */      status = FSMC_NAND_GetStatus();        data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);   if(!(data&0x1)) status = NAND_READY;        return (status);  }  /**    * @brief  This routine is for writing one or several 2048 Bytes Page size.    * @param  pBuffer: pointer on the Buffer containing data to be written    * @param  PageAddress: First page address    * @param  NumPageToWrite: Number of page to write     * @retval : New status of the NAND operation. This parameter can be:    *              - NAND_TIMEOUT_ERROR: when the previous operation generate    *                a Timeout error    *              - NAND_READY: when memory is ready for the next operation    *                And the new status of the increment address operation. It can be:    *              - NAND_VALID_ADDRESS: When the new address is valid address    *              - NAND_INVALID_ADDRESS: When the new address is invalid address     */    uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToWrite)  {    uint32_t index = 0x00, numpagewritten = 0x00,addressstatus = NAND_VALID_ADDRESS;    uint32_t status = NAND_READY, size = 0x00;    uint32_t data = 0xff;      while((NumPageToWrite != 0x00) && (addressstatus == NAND_VALID_ADDRESS) && (status == NAND_READY))    {      /* Page write command and address */      *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE0;        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);           /* Calculate the size */      size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpagewritten);        /* Write data */      for(; index < size; index++)      {        *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA) = pBuffer[index];      }           *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_WRITE1;        while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );           /* Check status for successful operation */      status = FSMC_NAND_GetStatus();        data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);   if(!(data&0x1)) status = NAND_READY;           if(status == NAND_READY)      {        numpagewritten++; NumPageToWrite--;          /* Calculate Next small page Address */        if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))        { addressstatus = NAND_INVALID_ADDRESS;}       }       }       return (status | addressstatus);  }     /**    * @brief  This routine is for sequential read from one or several    *         2048 Bytes Page size.     * @param  pBuffer: pointer on the Buffer to fill    * @param  PageAddress: First page address    * @param  NumPageToRead: Number of page to read     * @retval : New status of the NAND operation. This parameter can be:    *              - NAND_TIMEOUT_ERROR: when the previous operation generate    *                a Timeout error    *              - NAND_READY: when memory is ready for the next operation    *                And the new status of the increment address operation. It can be:    *              - NAND_VALID_ADDRESS: When the new address is valid address    *              - NAND_INVALID_ADDRESS: When the new address is invalid address    */        uint32_t FSMC_NAND_ReadSmallPage(uint8_t *pBuffer, uint32_t PageAddress, uint32_t NumPageToRead)  {    uint32_t index = 0x00, numpageread = 0x00, addressstatus = NAND_VALID_ADDRESS;    uint32_t status = NAND_READY, size = 0x00;     *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ1;        while((NumPageToRead != 0x0) && (addressstatus == NAND_VALID_ADDRESS))     {          /* Page Read command and page address */        *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_1st_CYCLE(PageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_2nd_CYCLE(PageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);       *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);                *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_READ2;         while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );             /* Calculate the size */       size = NAND_PAGE_SIZE + (NAND_PAGE_SIZE * numpageread);             /* Get Data into Buffer */          for(; index < size; index++)       {         pBuffer[index]= *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);       }          numpageread++; NumPageToRead--;         /* Calculate page address */                  if(PageAddress++ > (NAND_MAX_ZONE*NAND_ZONE_SIZE*NAND_BLOCK_SIZE))    { addressstatus = NAND_INVALID_ADDRESS;}   }       status = FSMC_NAND_GetStatus();        return (status | addressstatus);  }     /**    * @brief  This routine erase complete block from NAND FLASH    * @param  PageAddress: Any address into block to be erased    * @retval :New status of the NAND operation. This parameter can be:    *              - NAND_TIMEOUT_ERROR: when the previous operation generate    *                a Timeout error    *              - NAND_READY: when memory is ready for the next operation    */     uint32_t FSMC_NAND_EraseBlock(uint32_t PageAddress)  {   uint32_t data = 0xff, status = NAND_ERROR;       *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE0;      *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_3rd_CYCLE(PageAddress);    *(__IO uint8_t *)(Bank_NAND_ADDR | ADDR_AREA) = ADDR_4th_CYCLE(PageAddress);        *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_ERASE1;      while( GPIO_ReadInputDataBit(GPIOG, GPIO_Pin_6) == 0 );      /* Read status operation ------------------------------------ */     FSMC_NAND_GetStatus();      data = *(__IO uint8_t *)(Bank_NAND_ADDR | DATA_AREA);       if(!(data&0x1)) status = NAND_READY;         return (status);  }    /**    * @brief  This routine reset the NAND FLASH    * @param  None    * @retval :NAND_READY    */    uint32_t FSMC_NAND_Reset(void)  {    *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_RESET;      return (NAND_READY);  }    /**    * @brief  Get the NAND operation status    * @param  None    * @retval :New status of the NAND operation. This parameter can be:    *              - NAND_TIMEOUT_ERROR: when the previous operation generate    *                a Timeout error    *              - NAND_READY: when memory is ready for the next operation       */        uint32_t FSMC_NAND_GetStatus(void)  {    uint32_t timeout = 0x1000000, status = NAND_READY;      status = FSMC_NAND_ReadStatus();      /* Wait for a NAND operation to complete or a TIMEOUT to occur */    while ((status != NAND_READY) &&( timeout != 0x00))    {       status = FSMC_NAND_ReadStatus();       timeout --;         }      if(timeout == 0x00)    {               status =  NAND_TIMEOUT_ERROR;         }      /* Return the operation status */    return (status);       }     /**    * @brief  Reads the NAND memory status using the Read status command    * @param  None    * @retval :The status of the NAND memory. This parameter can be:    *              - NAND_BUSY: when memory is busy    *              - NAND_READY: when memory is ready for the next operation       *              - NAND_ERROR: when the previous operation gererates error        */     uint32_t FSMC_NAND_ReadStatus(void)  {    uint32_t data = 0x00, status = NAND_BUSY;      /* Read status operation ------------------------------------ */    *(__IO uint8_t *)(Bank_NAND_ADDR | CMD_AREA) = NAND_CMD_STATUS;    data = *(__IO uint8_t *)(Bank_NAND_ADDR);      if((data & NAND_ERROR) == NAND_ERROR)    {      status = NAND_ERROR;    }    else if((data & NAND_READY) == NAND_READY)    {      status = NAND_READY;    }    else    {      status = NAND_BUSY;    }       return (status);  } 


 

2,fsmc_nand.h文件:
 

 /* Define to prevent recursive inclusion -------------------------------------*/  #ifndef __FSMC_NAND_H  #define __FSMC_NAND_H    /* Includes ------------------------------------------------------------------*/  #include "stm32f10x.h"    /* Exported types ------------------------------------------------------------*/  typedef struct  {    uint8_t Maker_ID;    uint8_t Device_ID;    uint8_t Third_ID;    uint8_t Fourth_ID;  }NAND_IDTypeDef;    typedef struct  {    uint16_t Zone;    uint16_t Block;    uint16_t Page;  } NAND_ADDRESS;    /* Exported constants --------------------------------------------------------*/  /* NAND Area definition  for STM3210E-EVAL Board RevD */  #define CMD_AREA                   (uint32_t)(1<<16)  /* A16 = CLE high */  #define ADDR_AREA                  (uint32_t)(1<<17)  /* A17 = ALE high */  #define DATA_AREA                  ((uint32_t)0x00000000)    /* FSMC NAND memory command */  #define NAND_CMD_READ1             ((uint8_t)0x00)  #define NAND_CMD_READ2            ((uint8_t)0x30)    #define NAND_CMD_WRITE0            ((uint8_t)0x80)  #define NAND_CMD_WRITE1            ((uint8_t)0x10)    #define NAND_CMD_MOVE0             ((uint8_t)0x00)  #define NAND_CMD_MOVE1             ((uint8_t)0x35)  #define NAND_CMD_MOVE2             ((uint8_t)0x85)  #define NAND_CMD_MOVE3             ((uint8_t)0x10)     #define NAND_CMD_ERASE0            ((uint8_t)0x60)  #define NAND_CMD_ERASE1            ((uint8_t)0xD0)     #define NAND_CMD_READID            ((uint8_t)0x90)  #define NAND_CMD_IDADDR            ((uint8_t)0x00)     #define NAND_CMD_STATUS            ((uint8_t)0x70)  #define NAND_CMD_RESET             ((uint8_t)0xFF)    /* NAND memory status */  #define NAND_VALID_ADDRESS         ((uint32_t)0x00000100)  #define NAND_INVALID_ADDRESS       ((uint32_t)0x00000200)  #define NAND_TIMEOUT_ERROR         ((uint32_t)0x00000400)  #define NAND_BUSY                  ((uint32_t)0x00000000)  #define NAND_ERROR                 ((uint32_t)0x00000001)  #define NAND_READY                 ((uint32_t)0x00000040)    /* FSMC NAND memory parameters */  //#define NAND_PAGE_SIZE             ((uint16_t)0x0200) /* 512 bytes per page w/o Spare Area */  //#define NAND_BLOCK_SIZE            ((uint16_t)0x0020) /* 32x512 bytes pages per block */  //#define NAND_ZONE_SIZE             ((uint16_t)0x0400) /* 1024 Block per zone */  //#define NAND_SPARE_AREA_SIZE       ((uint16_t)0x0010) /* last 16 bytes as spare area */  //#define NAND_MAX_ZONE              ((uint16_t)0x0004) /* 4 zones of 1024 block */    /* FSMC NAND memory HY27UF081G2A-TPCB parameters */  #define NAND_PAGE_SIZE             ((uint16_t)0x0800) /* 2048 bytes per page w/o Spare Area */  #define NAND_BLOCK_SIZE            ((uint16_t)0x0040) /* 64x2048 bytes pages per block */  #define NAND_ZONE_SIZE             ((uint16_t)0x0200) /* 512 Block per zone */  #define NAND_SPARE_AREA_SIZE       ((uint16_t)0x0040) /* last 64 bytes as spare area */  #define NAND_MAX_ZONE              ((uint16_t)0x0002) /* 2 zones of 1024 block */    /* FSMC NAND memory data computation */  #define DATA_1st_CYCLE(DATA)       (uint8_t)((DATA)& 0xFF)               /* 1st data cycle */  #define DATA_2nd_CYCLE(DATA)       (uint8_t)(((DATA)& 0xFF00) >> 8)      /* 2nd data cycle */  #define DATA_3rd_CYCLE(DATA)       (uint8_t)(((DATA)& 0xFF0000) >> 16)   /* 3rd data cycle */  #define DATA_4th_CYCLE(DATA)       (uint8_t)(((DATA)& 0xFF000000) >> 24) /* 4th data cycle */    /* FSMC NAND memory HY27UF081G2A-TPCB address computation */  #define ADDR_1st_CYCLE(PADDR)       (uint8_t)(0x0)          /* 1st addressing cycle */  #define ADDR_2nd_CYCLE(PADDR)       (uint8_t)(0x0)     /* 2nd addressing cycle */  #define ADDR_3rd_CYCLE(PADDR)       (uint8_t)(PADDR & 0xFF)      /* 3rd addressing cycle */  #define ADDR_4th_CYCLE(PADDR)       (uint8_t)((PADDR>>8) & 0xFF) /* 4th addressing cycle */    /* Exported macro ------------------------------------------------------------*/  /* Exported functions ------------------------------------------------------- */  void FSMC_NAND_Init(void);  void FSMC_NAND_ReadID(NAND_IDTypeDef* NAND_ID);  uint32_t FSMC_NAND_WriteSmallPage(uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToWrite);  uint32_t FSMC_NAND_ReadSmallPage (uint8_t *pBuffer, uint32_t Address, uint32_t NumPageToRead);  uint32_t FSMC_NAND_MoveSmallPage (uint32_t SourcePageAddress, uint32_t TargetPageAddress);  //uint32_t FSMC_NAND_WriteSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaTowrite);  //uint32_t FSMC_NAND_ReadSpareArea(uint8_t *pBuffer, NAND_ADDRESS Address, uint32_t NumSpareAreaToRead);  uint32_t FSMC_NAND_EraseBlock(uint32_t Address);  uint32_t FSMC_NAND_Reset(void);  uint32_t FSMC_NAND_GetStatus(void);  uint32_t FSMC_NAND_ReadStatus(void);  //uint32_t FSMC_NAND_AddressIncrement(NAND_ADDRESS* Address);    #endif /* __FSMC_NAND_H */


 

 

原创粉丝点击