使用GetLogicalProcessorInformation获取逻辑处理器的详细信息(NUMA节点数、物理CPU数、CPU核心数、逻辑CPU数、各级Cache)

来源:互联网 发布:图书馆数据库需求分析 编辑:程序博客网 时间:2024/04/27 22:05

  现在多核处理器已经很普及了,市场主流是双核处理器,还有4核、8核等高端产品。而且Intel推广了超线程技术(Hyper-Threading Technology, HTT),可以将一个物理核心模拟为两个逻辑处理器。这一切使得“CPU数量”这一概念变得复杂起来,对于软件开发人员来说,希望能获得物理CPU数、CPU核心数、逻辑CPU数等详细信息。
  在Windows平台,可以调用GetLogicalProcessorInformation函数来获取它们的详细信息。


一、背景知识

  先来明确一下名词——
physical processor packages:物理处理器封装个数,即俗称的“物理CPU数”。例如一块“Intel Core i3-2310M”只有1个“物理处理器封装个数”。若对于有多个处理器插槽的服务器,“物理处理器封装个数”很可能会大于1。
processor cores:处理器核心数,即俗称的“CPU核心数”。例如“Intel Core i3-2310M”是双核处理器,它有2个“处理器核心数”。
logical processors:逻辑处理器数,即俗称的“逻辑CPU数”。例如“Intel Core i3-2310M”支持超线程,一个物理核心能模拟为两个逻辑处理器,即一块“Intel Core i3-2310M”有4个“逻辑处理器数”。

  再来看看2个大家可能不太熟悉的名词——
SMP:Symmetrical Multi-Processing,对称多处理机。
NUMA:Non Uniform Memory Access,非均匀访存模型。http://msdn.microsoft.com/en-us/library/aa363804(v=vs.85).aspx

  这个两个名词牵涉到很多专业知识,这里不做详细介绍,感兴趣的同学可以自行翻阅相关资料。
  老版本的Windows系统(例如Windows XP)采用的是SMP模型。但后来因多核处理器及异构计算的发展,从Windows Server 2003开始使用NUMA模型,系统中支持多个NUMA节点。对于开发人员来说,当只有1个NUMA节点时,与SMP模型是差不多的。
  对于 Windows XP,在打上SP3补丁后,也可以利用GetLogicalProcessorInformation函数获得NUMA等信息。


二、GetLogicalProcessorInformation函数的使用心得

  在MSDN上我们可以查到GetLogicalProcessorInformation函数的帮助——
http://msdn.microsoft.com/en-us/library/ms683194(v=vs.85).aspx
GetLogicalProcessorInformation function

  GetLogicalProcessorInformation函数还牵涉到一些结构体和枚举——
http://msdn.microsoft.com/en-us/library/ms686694(v=vs.85).aspx
SYSTEM_LOGICAL_PROCESSOR_INFORMATION structure

http://msdn.microsoft.com/en-us/library/ms684197(v=vs.85).aspx
LOGICAL_PROCESSOR_RELATIONSHIP enumeration

http://msdn.microsoft.com/en-us/library/ms681979(v=vs.85).aspx
CACHE_DESCRIPTOR structure

http://msdn.microsoft.com/en-us/library/ms684844(v=vs.85).aspx
PROCESSOR_CACHE_TYPE enumeration

  GetLogicalProcessorInformation函数用起来是有一定复杂性的。因为它返回的是SYSTEM_LOGICAL_PROCESSOR_INFORMATION数组,数组中的每一项分别描述了不同的信息,学习曲线较陡峭。
  虽然MSDN上有该函数的范例代码,但是它屏蔽了很多细节,对我们的帮助有限。于是我将该范例程序作了改进,显示了SYSTEM_LOGICAL_PROCESSOR_INFORMATION数组中每一项的详细信息。

  心得——
1.SYSTEM_LOGICAL_PROCESSOR_INFORMATION结构ProcessorMask是ULONG_PTR类型的。在32位系统上是32位,64位系统上是64位。为了简化代码,建议强制转型为UINT64类型,调用printf等输出函数时使用“I64”格式码。
2.ProcessorMask是处理器掩码,每一位代表一个逻辑处理器。所以一般来说,32位系统最多支持32个逻辑处理器,64位系统最多支持64个逻辑处理器。
3.对于Windows 7和Windows Server 2008 R2来说,能突破64个逻辑处理器限制,最高支持256个逻辑处理器。新加了 处理器组(Processor Groups)概念,详见:http://msdn.microsoft.com/en-us/library/dd405503(v=vs.85).aspx。


三、全部代码

  全部代码——

#include <windows.h>#include <malloc.h>    #include <stdio.h>#include <tchar.h>#if (_WIN32_WINNT < 0x0600)// [zyl910] 低版本的Windows SDK没有定义 RelationProcessorPackage 等常量#define RelationProcessorPackage3#define RelationGroup4#endif// [zyl910] LOGICAL_PROCESSOR_RELATIONSHIP枚举的名称const LPTSTR Names_LOGICAL_PROCESSOR_RELATIONSHIP[] = {_T("RelationProcessorCore"),_T("RelationNumaNode"),_T("RelationCache"),_T("RelationProcessorPackage"),_T("RelationGroup")};// [zyl910] PROCESSOR_CACHE_TYPE枚举的名称const LPTSTR Names_PROCESSOR_CACHE_TYPE[] = {_T("CacheUnified"),_T("CacheInstruction"),_T("CacheData"),_T("CacheTrace")};typedef BOOL (WINAPI *LPFN_GLPI)(    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION,     PDWORD);// Helper function to count set bits in the processor mask.DWORD CountSetBits(ULONG_PTR bitMask){    DWORD LSHIFT = sizeof(ULONG_PTR)*8 - 1;    DWORD bitSetCount = 0;    ULONG_PTR bitTest = (ULONG_PTR)1 << LSHIFT;        DWORD i;        for (i = 0; i <= LSHIFT; ++i)    {        bitSetCount += ((bitMask & bitTest)?1:0);        bitTest/=2;    }    return bitSetCount;}int _cdecl _tmain (){    LPFN_GLPI glpi;    BOOL done = FALSE;    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION buffer = NULL;    PSYSTEM_LOGICAL_PROCESSOR_INFORMATION ptr = NULL;    DWORD returnLength = 0;    DWORD logicalProcessorCount = 0;    DWORD numaNodeCount = 0;    DWORD processorCoreCount = 0;    DWORD processorL1CacheCount = 0;    DWORD processorL2CacheCount = 0;    DWORD processorL3CacheCount = 0;    DWORD processorPackageCount = 0;    DWORD byteOffset = 0;    PCACHE_DESCRIPTOR Cache;    glpi = (LPFN_GLPI) GetProcAddress(                            GetModuleHandle(TEXT("kernel32")),                            "GetLogicalProcessorInformation");    if (NULL == glpi)     {        _tprintf(TEXT("\nGetLogicalProcessorInformation is not supported.\n"));        return (1);    }    while (!done)    {        DWORD rc = glpi(buffer, &returnLength);        if (FALSE == rc)         {            if (GetLastError() == ERROR_INSUFFICIENT_BUFFER)             {                if (buffer)                     free(buffer);                buffer = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION)malloc(                        returnLength);                if (NULL == buffer)                 {                    _tprintf(TEXT("\nError: Allocation failure\n"));                    return (2);                }            }             else             {                _tprintf(TEXT("\nError %d\n"), GetLastError());                return (3);            }        }         else        {            done = TRUE;        }    }    ptr = buffer;if (true)// [zyl910] 显示SYSTEM_LOGICAL_PROCESSOR_INFORMATION结构体的详细信息{DWORD cnt = returnLength / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);// 计算SYSTEM_LOGICAL_PROCESSOR_INFORMATION结构体的数目for(DWORD i=0; i<cnt; ++i){_tprintf(TEXT("SYSTEM_LOGICAL_PROCESSOR_INFORMATION[%d]\n"), i);_tprintf(TEXT("\t.ProcessorMask:\t0x%.16I64X\t//%I64d\n"), (UINT64)ptr[i].ProcessorMask, (UINT64)ptr[i].ProcessorMask);_tprintf(TEXT("\t.Relationship:\t%d\t//%s\n"), ptr[i].Relationship, Names_LOGICAL_PROCESSOR_RELATIONSHIP[max(0,min(ptr[i].Relationship, RelationGroup))]);for(int j=0; j<2; ++j)_tprintf(TEXT("\t.Reserved[%d]:\t//0x%.16I64X\t%I64d\n"), j, (UINT64)ptr[i].Reserved[j], (UINT64)ptr[i].Reserved[j]);if (RelationCache==ptr[i].Relationship){_tprintf(TEXT("\t.Cache.Level:\t%u\n"), ptr[i].Cache.Level);_tprintf(TEXT("\t.Cache.Associativity:\t0x%.2X\t//%u\n"), ptr[i].Cache.Associativity, ptr[i].Cache.Associativity);_tprintf(TEXT("\t.Cache.LineSize:\t0x%.4X\t//%u\n"), ptr[i].Cache.LineSize, ptr[i].Cache.LineSize);_tprintf(TEXT("\t.Cache.Size:\t0x%.8X\t//%u\n"), ptr[i].Cache.Size, ptr[i].Cache.Size);_tprintf(TEXT("\t.Cache.Type:\t%d\t//%s\n"), ptr[i].Cache.Type, Names_PROCESSOR_CACHE_TYPE[max(0,min(ptr[i].Cache.Type, CacheTrace))]);}}}    while (byteOffset + sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION) <= returnLength)     {        switch (ptr->Relationship)         {        case RelationNumaNode:            // Non-NUMA systems report a single record of this type.            numaNodeCount++;            break;        case RelationProcessorCore:            processorCoreCount++;            // A hyperthreaded core supplies more than one logical processor.            logicalProcessorCount += CountSetBits(ptr->ProcessorMask);            break;        case RelationCache:            // Cache data is in ptr->Cache, one CACHE_DESCRIPTOR structure for each cache.             Cache = &ptr->Cache;            if (Cache->Level == 1)            {                processorL1CacheCount++;            }            else if (Cache->Level == 2)            {                processorL2CacheCount++;            }            else if (Cache->Level == 3)            {                processorL3CacheCount++;            }            break;        case RelationProcessorPackage:            // Logical processors share a physical package.            processorPackageCount++;            break;        default:            _tprintf(TEXT("\nError: Unsupported LOGICAL_PROCESSOR_RELATIONSHIP value.\n"));            break;        }        byteOffset += sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION);        ptr++;    }    _tprintf(TEXT("\nGetLogicalProcessorInformation results:\n"));    _tprintf(TEXT("Number of NUMA nodes: %d\n"),              numaNodeCount);    _tprintf(TEXT("Number of physical processor packages: %d\n"),              processorPackageCount);    _tprintf(TEXT("Number of processor cores: %d\n"),              processorCoreCount);    _tprintf(TEXT("Number of logical processors: %d\n"),              logicalProcessorCount);    _tprintf(TEXT("Number of processor L1/L2/L3 caches: %d/%d/%d\n"),              processorL1CacheCount,             processorL2CacheCount,             processorL3CacheCount);        free(buffer);    return 0;}


 

四、输出信息


  例如我的处理器是“Intel Core i3-2310M”,该程序的输出信息为——

SYSTEM_LOGICAL_PROCESSOR_INFORMATION[0].ProcessorMask:0x0000000000000005//5.Relationship:0//RelationProcessorCore.Reserved[0]://0x00000000000000011.Reserved[1]://0x00000000000000000SYSTEM_LOGICAL_PROCESSOR_INFORMATION[1].ProcessorMask:0x0000000000000005//5.Relationship:2//RelationCache.Reserved[0]://0x0000800000400801140737492551681.Reserved[1]://0x00000000000000022.Cache.Level:1.Cache.Associativity:0x08//8.Cache.LineSize:0x0040//64.Cache.Size:0x00008000//32768.Cache.Type:2//CacheDataSYSTEM_LOGICAL_PROCESSOR_INFORMATION[2].ProcessorMask:0x0000000000000005//5.Relationship:2//RelationCache.Reserved[0]://0x0000800000400801140737492551681.Reserved[1]://0x00000000000000011.Cache.Level:1.Cache.Associativity:0x08//8.Cache.LineSize:0x0040//64.Cache.Size:0x00008000//32768.Cache.Type:1//CacheInstructionSYSTEM_LOGICAL_PROCESSOR_INFORMATION[3].ProcessorMask:0x0000000000000005//5.Relationship:2//RelationCache.Reserved[0]://0x00040000004008021125899911038978.Reserved[1]://0x00000000000000000.Cache.Level:2.Cache.Associativity:0x08//8.Cache.LineSize:0x0040//64.Cache.Size:0x00040000//262144.Cache.Type:0//CacheUnifiedSYSTEM_LOGICAL_PROCESSOR_INFORMATION[4].ProcessorMask:0x000000000000000F//15.Relationship:3//RelationProcessorPackage.Reserved[0]://0x00000000000000000.Reserved[1]://0x00000000000000000SYSTEM_LOGICAL_PROCESSOR_INFORMATION[5].ProcessorMask:0x000000000000000A//10.Relationship:0//RelationProcessorCore.Reserved[0]://0x00000000000000011.Reserved[1]://0x00000000000000000SYSTEM_LOGICAL_PROCESSOR_INFORMATION[6].ProcessorMask:0x000000000000000A//10.Relationship:2//RelationCache.Reserved[0]://0x0000800000400801140737492551681.Reserved[1]://0x00000000000000022.Cache.Level:1.Cache.Associativity:0x08//8.Cache.LineSize:0x0040//64.Cache.Size:0x00008000//32768.Cache.Type:2//CacheDataSYSTEM_LOGICAL_PROCESSOR_INFORMATION[7].ProcessorMask:0x000000000000000A//10.Relationship:2//RelationCache.Reserved[0]://0x0000800000400801140737492551681.Reserved[1]://0x00000000000000011.Cache.Level:1.Cache.Associativity:0x08//8.Cache.LineSize:0x0040//64.Cache.Size:0x00008000//32768.Cache.Type:1//CacheInstructionSYSTEM_LOGICAL_PROCESSOR_INFORMATION[8].ProcessorMask:0x000000000000000A//10.Relationship:2//RelationCache.Reserved[0]://0x00040000004008021125899911038978.Reserved[1]://0x00000000000000000.Cache.Level:2.Cache.Associativity:0x08//8.Cache.LineSize:0x0040//64.Cache.Size:0x00040000//262144.Cache.Type:0//CacheUnifiedSYSTEM_LOGICAL_PROCESSOR_INFORMATION[9].ProcessorMask:0x000000000000000F//15.Relationship:2//RelationCache.Reserved[0]://0x0030000000400C0313510798886308867.Reserved[1]://0x00000000000000000.Cache.Level:3.Cache.Associativity:0x0C//12.Cache.LineSize:0x0040//64.Cache.Size:0x00300000//3145728.Cache.Type:0//CacheUnifiedSYSTEM_LOGICAL_PROCESSOR_INFORMATION[10].ProcessorMask:0x000000000000000F//15.Relationship:1//RelationNumaNode.Reserved[0]://0x00000000000000000.Reserved[1]://0x00000000000000000GetLogicalProcessorInformation results:Number of NUMA nodes: 1Number of physical processor packages: 1Number of processor cores: 2Number of logical processors: 4Number of processor L1/L2/L3 caches: 4/2/1


 

源码下载——
http://files.cnblogs.com/zyl910/showGetLogicalProcessorInformation.rar