河内之塔(Towers of Hanoi)

来源:互联网 发布:logo软件下载 编辑:程序博客网 时间:2024/05/16 15:34

已经大三了,开始思考以后的方向,想向底层方面进行,所以开始学习算法,此算法是递归算法的经典算法,自己也已这个算法进行开始。


说明
河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时
北越的首都,即现在的胡志明市;1883年法国数学家Edouard Lucas曾提及这个故事,据说创世
纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64
个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根
石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬
运完毕之时,此塔将毁损,而也就是世界末日来临之时。
解法如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘
子,就将B当作辅助柱。如果盘数超过2个,将第三个以下的盘子遮起来,就很简单了,每次处
理两个盘子,也就是:A->B、A ->C、B->C这三个步骤,而被遮住的部份,其实就是进入程式
的递回处理。事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则
所需次数为:264- 1 = 18446744073709551615为5.05390248594782e+16年,也就是约5000世纪,
如果对这数字没什幺概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。

#include <stdio.h>
void hanoi(int n, char A, char B, char C) {
if(n == 1) {
printf("Move sheet %d from %c to %c\n", n, A, C);
}
else {
hanoi(n-1, A, C, B);
printf("Move sheet %d from %c to %c\n", n, A, C);
hanoi(n-1, B, A, C);
}
}
int main() {
int n;
printf("请输入盘数:");
scanf("%d", &n);
hanoi(n, 'A', 'B', 'C');
return 0;
}

运行结果:




关于理解此算法,我也找了相关的资料:

  Hanoi塔问题中函数调用时系统所做工作一个函数在运行期调用另一个函数时,在运行被调用函数之前,系统先完成3件事:①将所有的实参、返回地址等信息传递给被调用函数保存。②为被调用函数的局部变量分配存储区;③将控制转移到被调用函数的入口。从被调用函数返回调用函数前,系统也应完成3件事:①保存被调用函数的结果;②释放被调用函数的数据区;③依照被调用函数保存的返回地址将控制转移到调用函数。当有多个函数构成嵌套调用时,按照“后调用先返回”的原则(LIFO),上述函数之间的信息传递和控制转移必须通过“栈”来实现,即系统将整个程序运行时所需的数据空间安排在一个栈中,每当调用一个函数时,就为其在栈顶分配一个存储区,每当从一个函数退出时,就释放其存储区,因此当前运行函数的数据区必在栈顶。堆栈特点:LIFO,除非转移或中断,堆栈内容的存或取表现出线性表列的性质。正是如此,程序不要求跟踪当前进入堆栈的真实单元,而只要用一个具有自动递增或自动递减功能的堆栈计数器,便可正确指出最后一次信息在堆栈中存放的地址。一个递归函数的运行过程类型于多个函数的嵌套调用,只是调用函数和被调用函数是同一个函数。因此,和每次调用相关的一个重要的概念是递归函数运行的“层次”。假设调用该递归函数的主函数为第0层,则从主函数调用递归函数为进入第1层;从第i层递归调用本函数为进入下一层,即i+1层。反之,退出第i层递归应返回至上一层,即i-1层。为了保证递归函数正确执行,系统需设立一个“递归工作栈”,作为整个递归函数运行期间使用的数据存储区。每一层递归所需信息构成一个“工作记录”,其中包括所有实参、所有局部变量以及上一层的返回地址。每进入一层递归,就产生一个新的工作记录压入栈顶。每退出一层递归,就从栈顶弹出一个工作记录,则当前执行层的工作记录必是递归工作栈栈顶的工作记录,称这个记录为“活动记录”,并称指示活动记录的栈顶指针为“当前环境指针”。


每天向自己的方向进步一点!!