msp430驱动cc1100

来源:互联网 发布:oracle awr sql 编辑:程序博客网 时间:2024/04/30 02:57

首先是main文件如下所示:

#include"msp430f5438.h"
#include "CC1100.h"
#include "delay.h"
#include"lcd1602.h"

void interrupt_init()
{         
    P2DIR &= ~BIT4;                            
    P2SEL &= ~BIT4;
    P2IE  |= BIT4;
    P2IES |= BIT4;
    P2IFG &= ~BIT4; 
    _EINT();                                 //使能总中断
}


void clk_init()
{
    UCSCTL3 |= SELREF_2;                      // Set DCO FLL reference = REFO
    UCSCTL4 |= SELA_2;                        // Set ACLK = REFO


    __bis_SR_register(SCG0);                  // Disable the FLL control loop
    UCSCTL0 = 0x0000;                         // Set lowest possible DCOx, MODx
    UCSCTL1 = DCORSEL_7;                      // Select DCO range 18MHz operation
    UCSCTL2 = FLLD_1 +549;                   // Set DCO Multiplier for 18MHz
                                            // (N + 1) * FLLRef = Fdco
                                            // (549 + 1) * 32768 = 18MHz
                                            // Set FLL Div = fDCOCLK/2
    __bic_SR_register(SCG0);                  // Enable the FLL control loop
    __delay_cycles(562500);
    do
    {
        UCSCTL7 &= ~(XT2OFFG + XT1LFOFFG + XT1HFOFFG + DCOFFG);
                                             // Clear XT2,XT1,DCO fault flags
        SFRIFG1 &= ~OFIFG;                      // Clear fault flags
    }while (SFRIFG1&OFIFG);                   // Test oscillator fault flag              

}


void main()
{  
    WDTCTL = WDTPW + WDTHOLD;
    clk_init();
    lcd_init();
    init_cc1100();
    interrupt_init();
    setRxMode();

    while (1);
}


#pragma vector=PORT2_VECTOR
__interrupt void WirelessReceive()
{
    int length = 4;
    INT8U status[2];
    INT8U packetLength;
    INT8U i = length*4;  // 具体多少要根据datarate和length来决定
    unsigned char RX[4];
    while (GDO0)
    {
_delay_us(1);
--i;
if(i<1)
{
P2IFG &= ~BIT4;
halSpiStrobe(CCxxx0_SRX);//进入接收状态
return;
}
    }
    if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0
    {
        packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度
        if (packetLength <= length) //如果所要的有效数据长度小于等于接收到的数据包的长度
        {
halSpiReadBurstReg(CCxxx0_RXFIFO, RX, packetLength); //读出所有接收到的数据
length = packetLength;//把接收数据长度的修改为当前数据的长度
// Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2);//读出CRC校验位
halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区
if(status[1] & CRC_OK)//如果校验成功返回接收成功
{
/*将接收到的值显示出来*/

lcd_write_int(3,1,RX[0]);
lcd_write_int(3,2,RX[1]);
lcd_write_int(3,3,RX[2]);
lcd_write_int(3,4,RX[3]);
}
        }
        else
        {
            length = packetLength;
            halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
        P2IFG &= ~BIT4;
        halSpiStrobe(CCxxx0_SRX);//进入接收状态
            return;
        }
    }
    else
    {
    P2IFG &= ~BIT4;
    halSpiStrobe(CCxxx0_SRX);//进入接收状态
    return;
    }
    P4OUT ^= BIT7;


P2IFG &= ~BIT4;
halSpiStrobe(CCxxx0_SRX);//进入接收状态
}


接下来是cc1100.h文件:

#ifndef __CC1100__
#define __CC1100__


#define    INT8Uunsigned char
#define    INT16Uunsigned int


#define     WRITE_BURST         0x40 //连续写入
#define     READ_SINGLE         0x80 //读
#define     READ_BURST          0xC0 //连续读
#define     BYTES_IN_RXFIFO     0x7F   //接收缓冲区的有效字节数
#define     CRC_OK              0x80 //CRC校验通过位标志


#define     CSN_0     P4OUT &= ~BIT0
#define     CSN_1     P4OUT |= BIT0


#define     SCK_0     P4OUT &= ~BIT1
#define     SCK_1     P4OUT |= BIT1


#define     MOSI_0    P4OUT &= ~BIT2
#define     MOSI_1    P4OUT |= BIT2


#define     GDO0      (P4IN&0x08) 


#define     GDO2      (P4IN&0x10)


#define     MISO      (P4IN&0x20)


// CC1100 STROBE, CONTROL AND STATUS REGSITER
#define CCxxx0_IOCFG2       0x00        // GDO2 output pin configuration
#define CCxxx0_IOCFG1       0x01        // GDO1 output pin configuration
#define CCxxx0_IOCFG0       0x02        // GDO0 output pin configuration
#define CCxxx0_FIFOTHR      0x03        // RX FIFO and TX FIFO thresholds
#define CCxxx0_SYNC1        0x04        // Sync word, high INT8U
#define CCxxx0_SYNC0        0x05        // Sync word, low INT8U
#define CCxxx0_PKTLEN       0x06        // Packet length
#define CCxxx0_PKTCTRL1     0x07        // Packet automation control
#define CCxxx0_PKTCTRL0     0x08        // Packet automation control
#define CCxxx0_ADDR         0x09        // Device address
#define CCxxx0_CHANNR       0x0A        // Channel number
#define CCxxx0_FSCTRL1      0x0B        // Frequency synthesizer control
#define CCxxx0_FSCTRL0      0x0C        // Frequency synthesizer control
#define CCxxx0_FREQ2        0x0D        // Frequency control word, high INT8U
#define CCxxx0_FREQ1        0x0E        // Frequency control word, middle INT8U
#define CCxxx0_FREQ0        0x0F        // Frequency control word, low INT8U
#define CCxxx0_MDMCFG4      0x10        // Modem configuration
#define CCxxx0_MDMCFG3      0x11        // Modem configuration
#define CCxxx0_MDMCFG2      0x12        // Modem configuration
#define CCxxx0_MDMCFG1      0x13        // Modem configuration
#define CCxxx0_MDMCFG0      0x14        // Modem configuration
#define CCxxx0_DEVIATN      0x15        // Modem deviation setting
#define CCxxx0_MCSM2        0x16        // Main Radio Control State Machine configuration
#define CCxxx0_MCSM1        0x17        // Main Radio Control State Machine configuration
#define CCxxx0_MCSM0        0x18        // Main Radio Control State Machine configuration
#define CCxxx0_FOCCFG       0x19        // Frequency Offset Compensation configuration
#define CCxxx0_BSCFG        0x1A        // Bit Synchronization configuration
#define CCxxx0_AGCCTRL2     0x1B        // AGC control
#define CCxxx0_AGCCTRL1     0x1C        // AGC control
#define CCxxx0_AGCCTRL0     0x1D        // AGC control
#define CCxxx0_WOREVT1      0x1E        // High INT8U Event 0 timeout
#define CCxxx0_WOREVT0      0x1F        // Low INT8U Event 0 timeout
#define CCxxx0_WORCTRL      0x20        // Wake On Radio control
#define CCxxx0_FREND1       0x21        // Front end RX configuration
#define CCxxx0_FREND0       0x22        // Front end TX configuration
#define CCxxx0_FSCAL3       0x23        // Frequency synthesizer calibration
#define CCxxx0_FSCAL2       0x24        // Frequency synthesizer calibration
#define CCxxx0_FSCAL1       0x25        // Frequency synthesizer calibration
#define CCxxx0_FSCAL0       0x26        // Frequency synthesizer calibration
#define CCxxx0_RCCTRL1      0x27        // RC oscillator configuration
#define CCxxx0_RCCTRL0      0x28        // RC oscillator configuration
#define CCxxx0_FSTEST       0x29        // Frequency synthesizer calibration control
#define CCxxx0_PTEST        0x2A        // Production test
#define CCxxx0_AGCTEST      0x2B        // AGC test
#define CCxxx0_TEST2        0x2C        // Various test settings
#define CCxxx0_TEST1        0x2D        // Various test settings
#define CCxxx0_TEST0        0x2E        // Various test settings


// Strobe commands
#define CCxxx0_SRES         0x30        // Reset chip.
#define CCxxx0_SFSTXON      0x31        // Enable and calibrate frequency synthesizer (if MCSM0.FS_AUTOCAL=1).
                                        // If in RX/TX: Go to a wait state where only the synthesizer is
                                        // running (for quick RX / TX turnaround).
#define CCxxx0_SXOFF        0x32        // Turn off crystal oscillator.
#define CCxxx0_SCAL         0x33        // Calibrate frequency synthesizer and turn it off
                                        // (enables quick start).
#define CCxxx0_SRX          0x34        // Enable RX. Perform calibration first if coming from IDLE and
                                        // MCSM0.FS_AUTOCAL=1.
#define CCxxx0_STX          0x35        // In IDLE state: Enable TX. Perform calibration first if
                                        // MCSM0.FS_AUTOCAL=1. If in RX state and CCA is enabled:
                                        // Only go to TX if channel is clear.
#define CCxxx0_SIDLE        0x36        // Exit RX / TX, turn off frequency synthesizer and exit
                                        // Wake-On-Radio mode if applicable.
#define CCxxx0_SAFC         0x37        // Perform AFC adjustment of the frequency synthesizer
#define CCxxx0_SWOR         0x38        // Start automatic RX polling sequence (Wake-on-Radio)
#define CCxxx0_SPWD         0x39        // Enter power down mode when CSn goes high.
#define CCxxx0_SFRX         0x3A        // Flush the RX FIFO buffer.
#define CCxxx0_SFTX         0x3B        // Flush the TX FIFO buffer.
#define CCxxx0_SWORRST      0x3C        // Reset real time clock.
#define CCxxx0_SNOP         0x3D        // No operation. May be used to pad strobe commands to two
                                        // INT8Us for simpler software.
#define CCxxx0_PARTNUM      0x30
#define CCxxx0_VERSION      0x31
#define CCxxx0_FREQEST      0x32
#define CCxxx0_LQI          0x33
#define CCxxx0_RSSI         0x34
#define CCxxx0_MARCSTATE    0x35
#define CCxxx0_WORTIME1     0x36
#define CCxxx0_WORTIME0     0x37
#define CCxxx0_PKTSTATUS    0x38
#define CCxxx0_VCO_VC_DAC   0x39
#define CCxxx0_TXBYTES      0x3A
#define CCxxx0_RXBYTES      0x3B
#define CCxxx0_PATABLE      0x3E
#define CCxxx0_TXFIFO       0x3F
#define CCxxx0_RXFIFO       0x3F


// RF_SETTINGS is a data structure which contains all relevant CCxxx0 registers
typedef struct S_RF_SETTINGS
{
    INT8U FSCTRL2; //自已加的
    INT8U FSCTRL1;   // Frequency synthesizer control.
    INT8U FSCTRL0;   // Frequency synthesizer control.
    INT8U FREQ2;     // Frequency control word, high INT8U.
    INT8U FREQ1;     // Frequency control word, middle INT8U.
    INT8U FREQ0;     // Frequency control word, low INT8U.
    INT8U MDMCFG4;   // Modem configuration.
    INT8U MDMCFG3;   // Modem configuration.
    INT8U MDMCFG2;   // Modem configuration.
    INT8U MDMCFG1;   // Modem configuration.
    INT8U MDMCFG0;   // Modem configuration.
    INT8U CHANNR;    // Channel number.
    INT8U DEVIATN;   // Modem deviation setting (when FSK modulation is enabled).
    INT8U FREND1;    // Front end RX configuration.
    INT8U FREND0;    // Front end RX configuration.
    INT8U MCSM0;     // Main Radio Control State Machine configuration.
    INT8U FOCCFG;    // Frequency Offset Compensation Configuration.
    INT8U BSCFG;     // Bit synchronization Configuration.
    INT8U AGCCTRL2;  // AGC control.
    INT8U AGCCTRL1;  // AGC control.
    INT8U AGCCTRL0;  // AGC control.
    INT8U FSCAL3;    // Frequency synthesizer calibration.
    INT8U FSCAL2;    // Frequency synthesizer calibration.
    INT8U FSCAL1;    // Frequency synthesizer calibration.
    INT8U FSCAL0;    // Frequency synthesizer calibration.
    INT8U FSTEST;    // Frequency synthesizer calibration control
    INT8U TEST2;     // Various test settings.
    INT8U TEST1;     // Various test settings.
    INT8U TEST0;     // Various test settings.
    INT8U IOCFG2;    // GDO2 output pin configuration
    INT8U IOCFG0;    // GDO0 output pin configuration
    INT8U PKTCTRL1;  // Packet automation control.
    INT8U PKTCTRL0;  // Packet automation control.
    INT8U ADDR;      // Device address.
    INT8U PKTLEN;    // Packet length.
} RF_SETTINGS;


void halWait(INT16U timeout);
void SpiInit(void) ;
void CpuInit(void) ;
void RESET_CC1100(void) ;
void POWER_UP_RESET_CC1100(void) ;
INT8U SpiTxRxByte(INT8U dat);
void halSpiWriteReg(INT8U addr, INT8U value); 
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count); 
void halSpiStrobe(INT8U strobe); 
INT8U halSpiReadReg(INT8U addr);
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count) ;
INT8U halSpiReadStatus(INT8U addr);
void halRfWriteRfSettings(void) ;
void halRfSendPacket(INT8U *txBuffer, INT8U size) ;
void setRxMode(void) ;
INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length); 
void init_cc1100(void);
#endif

cc1100.c文件:

#include "msp430f5438.h"
#include "cc1100.h"
#include"delay.h"
#include"lcd1602.h"
INT8U PaTabel[8] = {0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60 ,0x60};  //0dBm


const RF_SETTINGS rfSettings = 
{
    0x00,
    0x08,   // FSCTRL1   Frequency synthesizer control.
    0x00,   // FSCTRL0   Frequency synthesizer control.
    0x10,   // FREQ2     Frequency control word, high byte.
    0xA7,   // FREQ1     Frequency control word, middle byte.
    0x62,   // FREQ0     Frequency control word, low byte.
    0x5B,   // MDMCFG4   Modem configuration.
    0xF8,   // MDMCFG3   Modem configuration.
    0x03,   // MDMCFG2   Modem configuration.
    0x22,   // MDMCFG1   Modem configuration.
    0xF8,   // MDMCFG0   Modem configuration.


    0x00,   // CHANNR    Channel number.
    0x47,   // DEVIATN   Modem deviation setting (when FSK modulation is enabled).
    0xB6,   // FREND1    Front end RX configuration.
    0x10,   // FREND0    Front end RX configuration.
    0x18,   // MCSM0     Main Radio Control State Machine configuration.
    0x1D,   // FOCCFG    Frequency Offset Compensation Configuration.
    0x1C,   // BSCFG     Bit synchronization Configuration.
    0xC7,   // AGCCTRL2  AGC control.
    0x00,   // AGCCTRL1  AGC control.
    0xB2,   // AGCCTRL0  AGC control.


    0xEA,   // FSCAL3    Frequency synthesizer calibration.
    0x2A,   // FSCAL2    Frequency synthesizer calibration.
    0x00,   // FSCAL1    Frequency synthesizer calibration.
    0x11,   // FSCAL0    Frequency synthesizer calibration.
    0x59,   // FSTEST    Frequency synthesizer calibration.
    0x81,   // TEST2     Various test settings.
    0x35,   // TEST1     Various test settings.
    0x09,   // TEST0     Various test settings.
    0x0B,   // IOCFG2    GDO2 output pin configuration.
    0x06,   // IOCFG0D   GDO0 output pin configuration. Refer to SmartRF?Studio User Manual for detailed pseudo register explanation.


    0x04,   // PKTCTRL1  Packet automation control.
    0x05,   // PKTCTRL0  Packet automation control.
    0x00,   // ADDR      Device address.
    0x0c    // PKTLEN    Packet length.
};


//*****************************************************************************************
//函数名:delay(unsigned int s)
//输入:时间
//输出:无
//功能描述:普通廷时,内部用
//*****************************************************************************************






void halWait(INT16U timeout) {
    do 
    {
        __delay_cycles(20);


    } while (--timeout);
}




void SpiInit(void)
{
    CSN_0;
    SCK_0;
    CSN_1;
}


/*****************************************************************************************
函数名:CpuInit()
输入:无
输出:无
功能描述:SPI初始化程序
*****************************************************************************************/
void CpuInit(void)
{
    SpiInit();
    _delay_us(5000);
}

//*****************************************************************************************
//函数名:SpisendByte(INT8U dat)
//输入:发送的数据
//输出:无
//功能描述:SPI发送一个字节
//*****************************************************************************************
INT8U SpiTxRxByte(INT8U dat)
{
INT8U i,temp;
temp = 0;
SCK_0;
for(i=0; i<8; i++)
{
if(dat & 0x80)
   MOSI_1;
else 
                    MOSI_0;
dat <<= 1;


SCK_1; 
                __delay_cycles(10);


temp <<= 1;
if(MISO)
                    temp++; 
SCK_0;
                __delay_cycles(10);
}
return temp;
}


//*****************************************************************************************
//函数名:void RESET_CC1100(void)
//输入:无
//输出:无
//功能描述:复位CC1100
//*****************************************************************************************
void RESET_CC1100(void) 
{
    CSN_0; 
    while (MISO);
    SpiTxRxByte(CCxxx0_SRES); //写入复位命令
    while (MISO); 
    CSN_1; 
}


//*****************************************************************************************
//函数名:void POWER_UP_RESET_CC1100(void) 
//输入:无
//输出:无
//功能描述:上电复位CC1100
//*****************************************************************************************
void POWER_UP_RESET_CC1100(void) 
{
CSN_1; 
halWait(1); 
CSN_0; 
halWait(1); 
CSN_1; 
halWait(41); 
RESET_CC1100();   //复位CC1100
}


//*****************************************************************************************
//函数名:void halSpiWriteReg(INT8U addr, INT8U value)
//输入:地址和配置字
//输出:无
//功能描述:SPI写寄存器
//*****************************************************************************************
void halSpiWriteReg(INT8U addr, INT8U value) 
{
    CSN_0;
    while (MISO);
    SpiTxRxByte(addr); //写地址
    SpiTxRxByte(value); //写入配置
    CSN_1;
}


//*****************************************************************************************
//函数名:void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,写入缓冲区,写入个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************************************************
void halSpiWriteBurstReg(INT8U addr, INT8U *buffer, INT8U count) 
{
    INT8U i, temp;
    temp = addr | WRITE_BURST;
    CSN_0;
    while (MISO);
    SpiTxRxByte(temp);
    for (i = 0; i < count; i++)
    {
        SpiTxRxByte(buffer[i]);
    }
    CSN_1;
}


//*****************************************************************************************
//函数名:void halSpiStrobe(INT8U strobe)
//输入:命令
//输出:无
//功能描述:SPI写命令
//*****************************************************************************************
void halSpiStrobe(INT8U strobe) 
{
    CSN_0;
    while (MISO);
    SpiTxRxByte(strobe); //写入命令
    CSN_1;
}


//*****************************************************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该寄存器的配置字
//功能描述:SPI读寄存器
//*****************************************************************************************
INT8U halSpiReadReg(INT8U addr) 
{
    INT8U temp, value;
    temp = addr|READ_SINGLE;//读寄存器命令
    CSN_0;
    while (MISO);
    SpiTxRxByte(temp);
    value = SpiTxRxByte(0);
    CSN_1;
    return value;
}

//*****************************************************************************************
//函数名:void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count)
//输入:地址,读出数据后暂存的缓冲区,读出配置个数
//输出:无
//功能描述:SPI连续写配置寄存器
//*****************************************************************************************
void halSpiReadBurstReg(INT8U addr, INT8U *buffer, INT8U count) 
{
    INT8U i,temp;
    temp = addr | READ_BURST; //写入要读的配置寄存器地址和读命令
    CSN_0;
    while (MISO);
    SpiTxRxByte(temp);   
    for (i = 0; i < count; i++) 
    {
        buffer[i] = SpiTxRxByte(0);
    }
    CSN_1;
}




//*****************************************************************************************
//函数名:INT8U halSpiReadReg(INT8U addr)
//输入:地址
//输出:该状态寄存器当前值
//功能描述:SPI读状态寄存器
//*****************************************************************************************
INT8U halSpiReadStatus(INT8U addr) 
{
    INT8U value,temp;
    temp = addr | READ_BURST; //写入要读的状态寄存器的地址同时写入读命令
    CSN_0;
    while (MISO);
    SpiTxRxByte(temp);
    value = SpiTxRxByte(0);
    CSN_1;
    return value;
}
//*****************************************************************************************
//函数名:void halRfWriteRfSettings(RF_SETTINGS *pRfSettings)
//输入:无
//输出:无
//功能描述:配置CC1100的寄存器
//*****************************************************************************************
void halRfWriteRfSettings(void) 
{
    halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL2);//自已加的
    // Write register settings
    halSpiWriteReg(CCxxx0_FSCTRL1,  rfSettings.FSCTRL1);
    halSpiWriteReg(CCxxx0_FSCTRL0,  rfSettings.FSCTRL0);
    halSpiWriteReg(CCxxx0_FREQ2,    rfSettings.FREQ2);
    halSpiWriteReg(CCxxx0_FREQ1,    rfSettings.FREQ1);
    halSpiWriteReg(CCxxx0_FREQ0,    rfSettings.FREQ0);
    halSpiWriteReg(CCxxx0_MDMCFG4,  rfSettings.MDMCFG4);
    halSpiWriteReg(CCxxx0_MDMCFG3,  rfSettings.MDMCFG3);
    halSpiWriteReg(CCxxx0_MDMCFG2,  rfSettings.MDMCFG2);
    halSpiWriteReg(CCxxx0_MDMCFG1,  rfSettings.MDMCFG1);
    halSpiWriteReg(CCxxx0_MDMCFG0,  rfSettings.MDMCFG0);
    halSpiWriteReg(CCxxx0_CHANNR,   rfSettings.CHANNR);
    halSpiWriteReg(CCxxx0_DEVIATN,  rfSettings.DEVIATN);
    halSpiWriteReg(CCxxx0_FREND1,   rfSettings.FREND1);
    halSpiWriteReg(CCxxx0_FREND0,   rfSettings.FREND0);
    halSpiWriteReg(CCxxx0_MCSM0 ,   rfSettings.MCSM0 );
    halSpiWriteReg(CCxxx0_FOCCFG,   rfSettings.FOCCFG);
    halSpiWriteReg(CCxxx0_BSCFG,    rfSettings.BSCFG);
    halSpiWriteReg(CCxxx0_AGCCTRL2, rfSettings.AGCCTRL2);
    halSpiWriteReg(CCxxx0_AGCCTRL1, rfSettings.AGCCTRL1);
    halSpiWriteReg(CCxxx0_AGCCTRL0, rfSettings.AGCCTRL0);
    halSpiWriteReg(CCxxx0_FSCAL3,   rfSettings.FSCAL3);
    halSpiWriteReg(CCxxx0_FSCAL2,   rfSettings.FSCAL2);
    halSpiWriteReg(CCxxx0_FSCAL1,   rfSettings.FSCAL1);
    halSpiWriteReg(CCxxx0_FSCAL0,   rfSettings.FSCAL0);
    halSpiWriteReg(CCxxx0_FSTEST,   rfSettings.FSTEST);
    halSpiWriteReg(CCxxx0_TEST2,    rfSettings.TEST2);
    halSpiWriteReg(CCxxx0_TEST1,    rfSettings.TEST1);
    halSpiWriteReg(CCxxx0_TEST0,    rfSettings.TEST0);
    halSpiWriteReg(CCxxx0_IOCFG2,   rfSettings.IOCFG2);
    halSpiWriteReg(CCxxx0_IOCFG0,   rfSettings.IOCFG0);    
    halSpiWriteReg(CCxxx0_PKTCTRL1, rfSettings.PKTCTRL1);
    halSpiWriteReg(CCxxx0_PKTCTRL0, rfSettings.PKTCTRL0);
    halSpiWriteReg(CCxxx0_ADDR,     rfSettings.ADDR);
    halSpiWriteReg(CCxxx0_PKTLEN,   rfSettings.PKTLEN);
}


//*****************************************************************************************
//函数名:void halRfSendPacket(INT8U *txBuffer, INT8U size)
//输入:发送的缓冲区,发送数据个数
//输出:无
//功能描述:CC1100发送一组数据
//*****************************************************************************************


void halRfSendPacket(INT8U *txBuffer, INT8U size) 
{
    halSpiWriteReg(CCxxx0_TXFIFO, size);
    halSpiWriteBurstReg(CCxxx0_TXFIFO, txBuffer, size);//写入要发送的数据
    halSpiStrobe(CCxxx0_STX); //进入发送模式发送数据
    // Wait for GDO0 to be set -> sync transmitted
    while (!GDO0);
    // Wait for GDO0 to be cleared -> end of packet
    while (GDO0);
    halSpiStrobe(CCxxx0_SFTX);
}

void setRxMode(void)
{
    halSpiStrobe(CCxxx0_SRX); //进入接收状态
}

INT8U halRfReceivePacket(INT8U *rxBuffer, INT8U *length) 
{
    INT8U status[2];
    INT8U packetLength;
    INT8U i=(*length)*4;  // 具体多少要根据datarate和length来决定


    halSpiStrobe(CCxxx0_SRX); //进入接收状态
//delay(5);
    //while (!GDO1);
    //while (GDO1);
    _delay_us(2);
    while (GDO0)
    {
_delay_us(2);
--i;
if(i<1)
  return 0;    
    }  
    if ((halSpiReadStatus(CCxxx0_RXBYTES) & BYTES_IN_RXFIFO)) //如果接的字节数不为0
    {
        packetLength = halSpiReadReg(CCxxx0_RXFIFO);//读出第一个字节,此字节为该帧数据长度
        if (packetLength <= *length) //如果所要的有效数据长度小于等于接收到的数据包的长度
{
            halSpiReadBurstReg(CCxxx0_RXFIFO, rxBuffer, packetLength); //读出所有接收到的数据
            *length = packetLength; //把接收数据长度的修改为当前数据的长度       
            // Read the 2 appended status bytes (status[0] = RSSI, status[1] = LQI)
            halSpiReadBurstReg(CCxxx0_RXFIFO, status, 2); //读出CRC校验位
   halSpiStrobe(CCxxx0_SFRX);//清洗接收缓冲区
            return (status[1] & CRC_OK); //如果校验成功返回接收成功
        }
else 
{
            *length = packetLength;
            halSpiStrobe(CCxxx0_SFRX); //清洗接收缓冲区
            return 0;
        }
    } 
    else
        return 0;
}
void init_cc1100()
{


    CpuInit();
    P4DIR |= 0x07;
    P4DIR &= ~0x38;
    P4DIR |= BIT7;
    MOSI_0;    
    CSN_0;
    SCK_0;
    CSN_1;
    _delay_ms(10);
    POWER_UP_RESET_CC1100();
    halRfWriteRfSettings();
    halSpiWriteBurstReg(CCxxx0_PATABLE,PaTabel,8); 
}
延时函数:

#ifndef __CYCLES__
#define __CYCLES__
#define F_CPU    ((double)18000000)


#define _delay_us(x)\
  __delay_cycles( (unsigned long) ( (double)(F_CPU) *((x)/1000000.0) + 0.5))


#define _delay_ms(x)\
  __delay_cycles( (unsigned long) ( (double)(F_CPU)*((x)/1000.0) + 0.5))


#define _delay_s(x)\
  __delay_cycles( (unsigned long) ( (double)(F_CPU)*((x)/1.0) + 0.5))
#endif



12864显示部分程序太简单了,就不粘贴了。















原创粉丝点击