python排序方法参考

来源:互联网 发布:林红玉 知乎 编辑:程序博客网 时间:2024/05/18 04:51

在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数。《数据结构》也会花大量篇幅讲解排序。之前一段时间,由于需要,我复习了一下排序算法,并用Python实现了各种排序算法,放在这里作为参考。

最简单的排序有三种:插入排序,选择排序和冒泡排序。这三种排序比较简单,它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了。贴出来源代码。

插入排序:

?
1
2
3
4
5
6
7
8
9
10
11
12
def insertion_sort(sort_list):
    iter_len= len(sort_list)
    ifiter_len < 2:
        returnsort_list
    fori in range(1, iter_len):
        key= sort_list[i]
        j= i - 1
        whilej>=0and sort_list[j]>key:
            sort_list[j+1]= sort_list[j]
            j-=1
        sort_list[j+1]= key
    returnsort_list

冒泡排序:

?
1
2
3
4
5
6
7
8
9
def bubble_sort(sort_list):
    iter_len= len(sort_list)
    ifiter_len < 2:
        returnsort_list
    fori in range(iter_len-1):
        forj in range(iter_len-i-1):
            ifsort_list[j] > sort_list[j+1]:
                sort_list[j], sort_list[j+1]= sort_list[j+1], sort_list[j]
    returnsort_list

选择排序:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
def selection_sort(sort_list):
    iter_len= len(sort_list)
    ifiter_len < 2:
        returnsort_list
    fori in range(iter_len-1):
        smallest= sort_list[i]
        location= i
        forj in range(i, iter_len):
            ifsort_list[j] < smallest:
                smallest= sort_list[j]
                location= j
        ifi != location:
            sort_list[i], sort_list[location]= sort_list[location], sort_list[i]
    returnsort_list

这里我们可以看到这样的句子:

?
1
sort_list[i], sort_list[location]= sort_list[location], sort_list[i]

不了解Python的同学可能会觉得奇怪,没错,这是交换两个数的做法,通常在其他语言中如果要交换a与b的值,常常需要一个中间变量temp,首先把a赋给temp,然后把b赋给a,最后再把temp赋给b。但是在python中你就可以这么写:a, b = b, a,其实这是因为赋值符号的左右两边都是元组(这里需要强调的是,在python中,元组其实是由逗号“,”来界定的,而不是括号)。

平均时间复杂度为O(nlogn)的算法有:归并排序,堆排序和快速排序。

归并排序。对于一个子序列,分成两份,比较两份的第一个元素,小者弹出,然后重复这个过程。对于待排序列,以中间值分成左右两个序列,然后对于各子序列再递归调用。源代码如下,由于有工具函数,所以写成了callable的类:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class merge_sort(object):
    def_merge(self, alist, p, q, r):
        left= alist[p:q+1]
        right= alist[q+1:r+1]
        fori in range(p, r+1):
            iflen(left)>0and len(right)>0:
                ifleft[0]<=right[0]:
                    alist[i]= left.pop(0)
                else:
                    alist[i]= right.pop(0)
            eliflen(right)==0:
                alist[i]= left.pop(0)
            eliflen(left)==0:
                alist[i]= right.pop(0)
 
    def_merge_sort(self, alist, p, r):
        ifp<r:
            q= int((p+r)/2)
            self._merge_sort(alist, p, q)
            self._merge_sort(alist, q+1, r)
            self._merge(alist, p, q, r)
 
    def__call__(self, sort_list):
        self._merge_sort(sort_list,0, len(sort_list)-1)
        returnsort_list

堆排序,是建立在数据结构——堆上的。关于堆的基本概念、以及堆的存储方式这里不作介绍。这里用一个列表来存储堆(和用数组存储类似),对于处在i位置的元素,2*i+1位置上的是其左孩子,2*i+2是其右孩子,类似得可以得出该元素的父元素。

首先我们写一个函数,对于某个子树,从根节点开始,如果其值小于子节点的值,就交换其值。用此方法来递归其子树。接着,我们对于堆的所有非叶节点,自下而上调用先前所述的函数,得到一个树,对于每个节点(非叶节点),它都大于其子节点。(其实这是建立最大堆的过程)在完成之后,将列表的头元素和尾元素调换顺序,这样列表的最后一位就是最大的数,接着在对列表的0到n-1部分再调用以上建立最大堆的过程。最后得到堆排序完成的列表。以下是源代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
class heap_sort(object):
    def_left(self, i):
        return2*i+1
    def_right(self, i):
        return2*i+2
    def_parent(self, i):
        ifi%2==1:
            returnint(i/2)
        else:
            returni/2-1
     
    def_max_heapify(self, alist, i, heap_size=None):
        length= len(alist)
         
        ifheap_size isNone:
            heap_size= length
 
        l= self._left(i)
        r= self._right(i)
 
        iflalist[i]:
            largest= l
        else:
            largest= i
        ifralist[largest]:
            largest= r
 
        iflargest!=i:
            alist[i], alist[largest]= alist[largest], alist[i]
            self._max_heapify(alist, largest, heap_size)
 
    def_build_max_heap(self, alist):
        roop_end= int(len(alist)/2)
        fori in range(0, roop_end)[::-1]:
            self._max_heapify(alist, i)
 
    def__call__(self, sort_list):
        self._build_max_heap(sort_list)
        heap_size= len(sort_list)
        fori in range(1,len(sort_list))[::-1]:
            sort_list[0], sort_list[i]= sort_list[i], sort_list[0]
            heap_size-=1
            self._max_heapify(sort_list,0, heap_size)
 
        returnsort_list

最后一种要说明的交换排序算法(以上所有算法都为交换排序,原因是都需要通过两两比较交换顺序)自然就是经典的快速排序。

先来讲解一下原理。首先要用到的是分区工具函数(partition),对于给定的列表(数组),我们首先选择基准元素(这里我选择最后一个元素),通过比较,最后使得该元素的位置,使得这个运行结束的新列表(就地运行)所有在基准元素左边的数都小于基准元素,而右边的数都大于它。然后我们对于待排的列表,用分区函数求得位置,将列表分为左右两个列表(理想情况下),然后对其递归调用分区函数,直到子序列的长度小于等于1。

下面是快速排序的源代码:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class quick_sort(object):
    def_partition(self, alist, p, r):
        i= p-1
        x= alist[r]
        forj in range(p, r):
            ifalist[j]<=x:
                i+=1
                alist[i], alist[j]= alist[j], alist[i]
        alist[i+1], alist[r]= alist[r], alist[i+1]
        returni+1
 
    def_quicksort(self, alist, p, r):
        ifp<r:
            q= self._partition(alist, p, r)
            self._quicksort(alist, p, q-1)
            self._quicksort(alist, q+1, r)
 
    def__call__(self, sort_list):
        self._quicksort(sort_list,0, len(sort_list)-1)
        returnsort_list

细心的朋友在这里可能会发现一个问题,如果待排序列正好是顺序的时候,整个的递归将会达到最大递归深度(序列的长度)。而实际上在操作的时候,当列表长度大于1000(理论值)的时候,程序会中断,报超出最大递归深度的错误(maximum recursion depth exceeded)。在查过资料后我们知道,Python在默认情况下,最大递归深度为1000(理论值,其实真实情况下,只有995左右,各个系统这个值的大小也不同)。这个问题有两种解决方案,1)重新设置最大递归深度,采用以下方法设置:

?
1
2
import sys
sys.setrecursionlimit(99999)

2)第二种方法就是采用另外一个版本的分区函数,称为随机化分区函数。由于之前我们的选择都是子序列的最后一个数,因此对于特殊情况的健壮性就差了许多。现在我们随机从子序列选择基准元素,这样可以减少对特殊情况的差错率。新的randomize partition函数如下:

?
1
2
3
4
def _randomized_partition(self, alist, p, r):
    i= random.randint(p, r)
    alist[i], alist[r]= alist[r], alist[i]
    returnself._partition(alist, p, r)

完整的randomize_quick_sort的代码如下(这里我直接继承之前的quick_sort类):

?
1
2
3
4
5
6
7
8
9
10
11
12
import random
class randomized_quick_sort(quick_sort):
    def_randomized_partition(self, alist, p, r):
        i= random.randint(p, r)
        alist[i], alist[r]= alist[r], alist[i]
        returnself._partition(alist, p, r)
 
    def_quicksort(self, alist, p, r):
        ifp<r:
            q= self._randomized_partition(alist, p, r)
            self._quicksort(alist, p, q-1)
            self._quicksort(alist, q+1, r)

关于快速排序的讨论还没有结束。我们都知道,Python是一门很优雅的语言,而Python写出来的代码是相当简洁而可读性极强的。这里就介绍快排的另一种写法,只需要三行就能够搞定,但是又不失阅读性。(当然,要看懂是需要一定的Python基础的)代码如下:

?
1
2
3
4
5
6
def quick_sort_2(sort_list):
    iflen(sort_list)<=1:
        returnsort_list
    returnquick_sort_2([lt forlt in sort_list[1:]if lt<sort_list[0]])+ \
           sort_list[0:1]+ \
           quick_sort_2([gefor ge in sort_list[1:]if ge>=sort_list[0]])

怎么样看懂了吧,这段代码出自《Python cookbook 第二版》,这种写法展示出了列表推导的强大表现力。

对于比较排序算法,我们知道,可以把所有可能出现的情况画成二叉树(决策树模型),对于n个长度的列表,其决策树的高度为h,叶子节点就是这个列表乱序的全部可能性为n!,而我们知道,这个二叉树的叶子节点不会超过2^h,所以有2^h>=n!,取对数,可以知道,h>=logn!,这个是近似于O(nlogn)。也就是说比较排序算法的最好性能就是O(nlgn)。

那有没有线性时间,也就是时间复杂度为O(n)的算法呢?答案是肯定的。不过由于排序在实际应用中算法其实是非常复杂的。这里只是讨论在一些特殊情形下的线性排序算法。特殊情形下的线性排序算法主要有计数排序,桶排序和基数排序。这里只简单说一下计数排序。

计数排序是建立在对待排序列这样的假设下:假设待排序列都是正整数。首先,声明一个新序列list2,序列的长度为待排序列中的最大数。遍历待排序列,对每个数,设其大小为i,list2[i]++,这相当于计数大小为i的数出现的次数。然后,申请一个list,长度等于待排序列的长度(这个是输出序列,由此可以看出计数排序不是就地排序算法),倒序遍历待排序列(倒排的原因是为了保持排序的稳定性,及大小相同的两个数在排完序后位置不会调换),假设当前数大小为i,list[list2[i]-1] = i,同时list2[i]自减1(这是因为这个大小的数已经输出一个,所以大小要自减)。于是,计数排序的源代码如下。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class counting_sort(object):
    def_counting_sort(self, alist, k):
        alist3= [0for i inrange(k)]
        alist2= [0for i inrange(len(alist))]
        forj in alist:
            alist3[j]+=1
        fori in range(1, k):
            alist3[i]= alist3[i-1]+ alist3[i]
        forl in alist[::-1]:
            alist2[alist3[l]-1]= l
            alist3[l]-=1
        returnalist2
 
    def__call__(self, sort_list, k=None):
        ifk is None:
            importheapq
            k= heapq.nlargest(1, sort_list)[0]+ 1
        returnself._counting_sort(sort_list, k)

各种排序算法介绍完(以上的代码都通过了我写的单元测试),我们再回到Python这个主题上来。其实Python从最早的版本开始,多次更换内置的排序算法。从开始使用C库提供的qsort例程(这个方法有相当多的问题),到后来自己开始实现自己的算法,包括2.3版本以前的抽样排序和折半插入排序的混合体,以及最新的适应性的排序算法,代码也由C语言的800行到1200行,以至于更多。从这些我们可以知道,在实际生产环境中,使用经典的排序算法是不切实际的,它们仅仅能做学习研究之用。而在实践中,更推荐的做法应该遵循以下两点:

  1. 当需要排序的时候,尽量设法使用内建Python列表的sort方法。
  2. 当需要搜索的时候,尽量设法使用内建的字典。

我写了测试函数,来比较内置的sort方法相比于以上方法的优越性。测试序列长度为5000,每个函数测试3次取平均值,可以得到以下的测试结果:

排序结果

可以看出,Python内置函数是有很大的优势的。因此在实际应用时,我们应该尽量使用内置的sort方法。

由此,我们引出另外一个问题。怎么样判断一个序列中是否有重复元素,如果有返回True,没有返回False。有人会说,这不很简单么,直接写两个嵌套的迭代,遍历就是了。代码写下来应该是这样。

?
1
2
3
4
5
6
7
def normal_find_same(alist):
    length= len(alist)
    fori in range(length):
        forj in range(i+1, length):
            ifalist[i] ==alist[j]:
                returnTrue
    returnFalse

这种方法的代价是非常大的(平均时间复杂度是O(n^2),当列表中没有重复元素的时候会达到最坏情况),由之前的经验,我们可以想到,利用内置sort方法极快的经验,我们可以这么做:首先将列表排序,然后遍历一遍,看是否有重复元素。包括完整的测试代码如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import time
import random
 
def record_time(func, alist):
    start= time.time()
    func(alist)
    end= time.time()
 
    returnend - start
 
def quick_find_same(alist):
    alist.sort()
    length= len(alist)
    fori in range(length-1):
        ifalist[i] ==alist[i+1]:
            returnTrue
    returnFalse
 
if __name__ =="__main__":
    methods= (normal_find_same, quick_find_same)
    alist= range(5000)
    random.shuffle(alist)
     
    form in methods:
        print'The method %s spends %s' % (m.__name__, record_time(m, alist))
         
        

运行以后我的数据是,对于5000长度,没有重复元素的列表,普通方法需要花费大约1.205秒,而快速查找法花费只有0.003秒。这就是排序在实际应用中的一个例子。

原文章地址:http:qinxuye.me/article/implement-sort-algorithm-with-python/

python排序总结

  1. # sort.py  
  2. # 这个类用来演示如何对自定义对象进行排序  
  3. class Sortobj:  
  4.       a = 0  
  5.       b = ''  
  6.     def __init__(self, a, b):  
  7.         self.a = a  
  8.         self.b = b  
  9.     def printab(self):  
  10.         print self.a,self.b  
  11.   
  12. # 演示对字符串列表进行排序  
  13. samplelist_str = ['blue','allen','sophia','keen']  
  14. print samplelist_str  
  15. samplelist_str.sort()  
  16. print samplelist_str  
  17.   
  18. print '\n'  
  19.   
  20. # 演示对整型数进行排序  
  21. samplelist_int = [34,23,2,2333,45]  
  22. print samplelist_int  
  23. samplelist_int.sort()  
  24. print samplelist_int  
  25.   
  26. print '\n'  
  27.   
  28. # 演示对字典数据进行排序  
  29. sampledict_str = {'blue':'5555@sina.com',  
  30.                     'allen':'222@163.com',  
  31.                     'sophia':'4444@gmail.com',  
  32.                     'ceen':'blue@263.net'}  
  33. print sampledict_str  
  34. # 按照key进行排序  
  35. print sorted(sampledict_str.items(), key=lambda d: d[0])  
  36. # 按照value进行排序  
  37. print sorted(sampledict_str.items(), key=lambda d: d[1])  
  38.   
  39. # 构建用于排序的类实例  
  40. obja = Sortobj(343, 'keen')  
  41. objb = Sortobj(56, 'blue')  
  42. objc = Sortobj(2, 'aba')  
  43. objd = Sortobj(89, 'iiii')  
  44.   
  45. print '\n'  
  46.   
  47. samplelist_obj = [obja, objb, objc, objd]  
  48. # 实例对象排序前  
  49. for obj in samplelist_obj:  
  50.       obj.printab()  
  51. print '\n'  
  52. # 按照对象的a属性进行排序  
  53. samplelist_obj.sort(lambda x,y:cmp(x.a, y.a))  
  54. for obj in samplelist_obj:  
  55.       obj.printab()  
  56. print '\n'  
  57. # 按照对象的b属性进行排序  
  58. samplelist_obj.sort(lambda x,y: cmp(x.b, y.b))  
  59. for obj in samplelist_obj:  
  60.       obj.printab()

逆序排列

for k, v in sorted(myDict.items()     , key=lambda x: x[1]     ,reverse=True):
         print k,v

来自: http://hi.baidu.com/vivid217/blog/item/eb5b84ef235a87ecce1b3e8d.html