基于S3C2440的嵌入式Linux驱动——SPI子系统解读(三)

来源:互联网 发布:超图软件股票 编辑:程序博客网 时间:2024/05/13 06:34

转载自: http://blog.csdn.net/yj4231/article/details/7751279


该系列文章将分为四个部分:

   第一部分,将对SPI子系统整体进行描述,同时给出SPI的相关数据结构,最后描述SPI总线的注册。基于S3C2440的嵌入式Linux驱动——SPI子系统解读(一)

   第二部分,该文将对SPI的主控制器(master)驱动进行描述。基于S3C2440的嵌入式Linux驱动——SPI子系统解读(二)

   第三部分,即本篇文章,该文将对SPI设备驱动,也称protocol 驱动,进行讲解。

   第四部分,通过SPI设备驱动留给用户层的API,我们将从上到下描述数据是如何通过SPI的protocol 驱动,由bitbang中转,最后由master驱动将数据传输出 

                   去。 基于S3C2440的嵌入式Linux驱动——SPI子系统解读(四)


本文属于第三部分。

5. SPI设备驱动

    在主控制器驱动中,spi_device已经注册了,在设备驱动中,首先要做的就是注册spi_driver,并提供用户层相应的API。

5.1 SPI设备驱动的注册

下列数据结构及函数位于drivers/spi/spidev.c。

static struct file_operations spidev_fops = {    .owner =    THIS_MODULE,    /* REVISIT switch to aio primitives, so that userspace     * gets more complete API coverage.  It'll simplify things     * too, except for the locking.     */    .write =    spidev_write,    .read =        spidev_read,    .unlocked_ioctl = spidev_ioctl,    .open =        spidev_open,    .release =    spidev_release,};/* The main reason to have this class is to make mdev/udev create the * /dev/spidevB.C character device nodes exposing our userspace API. * It also simplifies memory management. */static struct class *spidev_class;static struct spi_driver spidev_spi = {    .driver = {        .name =        "spidev",        .owner =    THIS_MODULE,    },    .probe =    spidev_probe,    .remove =    __devexit_p(spidev_remove),    /* NOTE:  suspend/resume methods are not necessary here.     * We don't do anything except pass the requests to/from     * the underlying controller.  The refrigerator handles     * most issues; the controller driver handles the rest.     */};static int __init spidev_init(void){int status;/* Claim our 256 reserved device numbers.  Then register a class * that will key udev/mdev to add/remove /dev nodes.  Last, register * the driver which manages those device numbers. */BUILD_BUG_ON(N_SPI_MINORS > 256);/*检查次设备号*/status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops); /*注册字符设备,major=153*/if (status < 0)return status;spidev_class = class_create(THIS_MODULE, "spidev");/*创建sysfs入口,spidev类*/if (IS_ERR(spidev_class)) {unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);return PTR_ERR(spidev_class);}status = spi_register_driver(&spidev_spi);/*注册spi_driver,并调用probe方法*/if (status < 0) {class_destroy(spidev_class);                    /* 在sysfs中移除spidev_class目录*/unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);}return status;}module_init(spidev_init);static void __exit spidev_exit(void){spi_unregister_driver(&spidev_spi);/*注销spi_driver*/class_destroy(spidev_class);/*注销类*/unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);/*注销字符设备*/}module_exit(spidev_exit);
该函数中,创建了一个字符设备以提供API给用户层,同时创建了一个spidev类,最后注册spi_driver到内核中。

在这里我们看到了SPI设备驱动是如何提供API给用户层的,那就是通过再熟悉不过的字符设备。通过字符设备,给用户层提供了5个API:open,release,write,read和ioctl。本文在后面将介绍open和close,剩余3个将在本系列的第四篇文章中介绍。

接着看下spi_register_driver函数, 该函数位于drivers/spi/spidev.c。

/** * spi_register_driver - register a SPI driver * @sdrv: the driver to register * Context: can sleep */int spi_register_driver(struct spi_driver *sdrv){sdrv->driver.bus = &spi_bus_type;if (sdrv->probe)sdrv->driver.probe = spi_drv_probe;if (sdrv->remove)sdrv->driver.remove = spi_drv_remove;if (sdrv->shutdown)sdrv->driver.shutdown = spi_drv_shutdown;return driver_register(&sdrv->driver);}EXPORT_SYMBOL_GPL(spi_register_driver);
在调用driver_register的过程中,将用driver.name和spi_device的modalias字段进行比较,两者相等则将该spi_driver和spi_device进行绑定。

当spi_driver注册成功以后,将调用probe方法:spidev_probe函数。

5.2 probe方法

我们来看看spidev_probe这个函数,该函数位于drivers/spi/spidev.c。

#define SPIDEV_MAJOR            153    /* assigned */#define N_SPI_MINORS            32    /* ... up to 256 */static unsigned long    minors[N_SPI_MINORS / BITS_PER_LONG];    /**/static LIST_HEAD(device_list);static DEFINE_MUTEX(device_list_lock);static int spidev_probe(struct spi_device *spi){struct spidev_data*spidev;intstatus;unsigned longminor;/* Allocate driver data */spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);/*以kmalloc分配内存,并清0*/if (!spidev)return -ENOMEM;/* Initialize the driver data */spidev->spi = spi; /*保存spi_device*/spin_lock_init(&spidev->spi_lock);/*初始化自旋锁*/mutex_init(&spidev->buf_lock);/*初始化互斥体*/INIT_LIST_HEAD(&spidev->device_entry);/*初始化链表头,链表为双向循环链表*//* If we can allocate a minor number, hook up this device. * Reusing minors is fine so long as udev or mdev is working. */mutex_lock(&device_list_lock);/*上锁*/minor = find_first_zero_bit(minors, N_SPI_MINORS);/*分配次设备号*/if (minor < N_SPI_MINORS) {struct device *dev;spidev->devt = MKDEV(SPIDEV_MAJOR, minor);/*根据主次设备号来获取设备号*/dev = device_create(spidev_class, &spi->dev, spidev->devt,/*创建设备节点*/    spidev, "spidev%d.%d",    spi->master->bus_num, spi->chip_select);status = IS_ERR(dev) ? PTR_ERR(dev) : 0;} else {dev_dbg(&spi->dev, "no minor number available!\n");status = -ENODEV;}if (status == 0) {set_bit(minor, minors);/*保存已使用的次设备号*/list_add(&spidev->device_entry, &device_list);/*在链表头list后面添加entry*/}mutex_unlock(&device_list_lock);/*解锁互斥体*/if (status == 0)spi_set_drvdata(spi, spidev);/*spi->dev.driver_data=spidev*/elsekfree(spidev);return status;}
其中用到的的struct spidev_data结构如下:

struct spidev_data {    dev_t            devt;    spinlock_t        spi_lock;    struct spi_device    *spi;    struct list_head    device_entry;    /* buffer is NULL unless this device is open (users > 0) */    struct mutex        buf_lock;    unsigned        users;    u8            *buffer;};

这个函数中,分配了spidev_data和次设备号,随后根据主次设备号创建了设备节点。设备节点的名字是spidev“bus_num””.chip_select",意思就是该设备是在第几个SPI接口上的第几个设备。

   此外,将spidev添加到device_list中,这样做就方便查找该spidev。

5.3 remove方法

下列函数位于drivers/spi/spidev.c。

static int spidev_remove(struct spi_device *spi){struct spidev_data*spidev = spi_get_drvdata(spi);/* make sure ops on existing fds can abort cleanly */spin_lock_irq(&spidev->spi_lock);spidev->spi = NULL;spi_set_drvdata(spi, NULL);spin_unlock_irq(&spidev->spi_lock);/* prevent new opens */mutex_lock(&device_list_lock);list_del(&spidev->device_entry);/*删除entry*/device_destroy(spidev_class, spidev->devt);/*删除设备节点*/clear_bit(MINOR(spidev->devt), minors);/*删除使用的次设备号信息*/if (spidev->users == 0)kfree(spidev);mutex_unlock(&device_list_lock);return 0;}
6. open和release

接着来看下open和release系统调用的API接口,其余3个接口将在本系列的第四篇文章中给出。

6.1 open方法

下列函数位于drivers/spi/spidev.c。

static int spidev_open(struct inode *inode, struct file *filp){struct spidev_data*spidev;intstatus = -ENXIO;lock_kernel();/*加锁大内核锁,可以睡眠,只能在进程上下文使用*/mutex_lock(&device_list_lock);/*加锁互斥体*/list_for_each_entry(spidev, &device_list, device_entry) {/*从list开始遍历entry,即遍历所有的spidev*/if (spidev->devt == inode->i_rdev) {/*判断设备号是否相等*/status = 0;/*找到匹配的spi设备*/break;}}if (status == 0) {/*NOTE:多个程序调用open方法,但他们共享一个buffer,因此对buufer需要进行互斥保护*/if (!spidev->buffer) {/*buffer为空*/ spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);/*分配buffer缓冲区,默认4KB*/if (!spidev->buffer) {dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");status = -ENOMEM;}}if (status == 0) {spidev->users++;/*成功open以后,增加用户计数*/filp->private_data = spidev;/*保存spidev指针*/nonseekable_open(inode, filp);  /*禁用lseek*/}} elsepr_debug("spidev: nothing for minor %d\n", iminor(inode));mutex_unlock(&device_list_lock);/*释放互斥体*/unlock_kernel();/*释放大内核锁*/return status;}

在这里,以device_list为链表头,遍历所有的spidev_data结构,通过设备节点的设备号和spidev_data中保存的设备号进行匹配,来找到属于该设备节点的spi设备。随后,分配了spi设备驱动层所使用的缓冲区,最后增加打开计数。

6.2 release方法

下列函数位于drivers/spi/spidev.c。

static int spidev_release(struct inode *inode, struct file *filp){struct spidev_data*spidev;intstatus = 0;mutex_lock(&device_list_lock);/*加锁互斥体*/spidev = filp->private_data;/*获取spidev*/filp->private_data = NULL;/* last close? */spidev->users--;/*关闭设备文件,减少用户计数*/if (!spidev->users) {/*如果用户数为0*/intdofree;kfree(spidev->buffer);/*释放缓冲区*/spidev->buffer = NULL;/* ... after we unbound from the underlying device? */spin_lock_irq(&spidev->spi_lock);/*加锁互斥体*/dofree = (spidev->spi == NULL);/*????*/spin_unlock_irq(&spidev->spi_lock);/*释放互斥体*/if (dofree)kfree(spidev);/*释放spidev,在probe中分配*/}mutex_unlock(&device_list_lock);/*释放互斥体*/return status;}
 至此,对于protocol驱动层的框架进行了简单的分析,在下一篇将对该驱动层很多未分析的函数进行一一讲解。下一篇的内容非常的重要哦。