[Erlang 0067] Erlang gb_trees

来源:互联网 发布:手机垂直测量仪软件 编辑:程序博客网 时间:2024/05/06 04:58
   
   gb_trees (General Balanced Trees) 通用二叉查找树,通常被用作有序字典.与普通未平衡二叉树相比没有额外的储存开销,这里所说的额外的存储开销是指是否使用额外的metadata记录节点相关的信息,dict和array的实现就使用了这样的描述信息,换句话说gb_trees是自描述的.性能优于AVL trees. 相关论文: General Balanced Trees http://www.2007.cccg.ca/~morin/teaching/5408/refs/a99.pdf
 和proplists,orddict相比它能够支持更大的数据量.  
 
  平衡二叉树(又称AVL树) ,左右子树的深度只差绝对值不超过1.这个插值称为平衡因子(balance factor),查找,插入和删除在平均和最坏情况下都是O(logn).节点的插入和删除平衡树失衡会触发重新平衡.重新平衡通过四种旋转实现:LL LR RR RL.gb_trees由于节点删除操作并不会增加树的高度,所以节点删除之后并没有进行再平衡.
 注:  gb_treess数据项比较使用的是相等==操作符.
 

gb_trees数据结构

gb_trees={Size,Tree}
Tree=  {Key, Value, Smaller, Bigger} |nil
Smaller=Tree
Bigger=  Tree
 

gb_trees操作

 

Eshell V5.9.1  (abort with ^G)1> G=gb_trees.gb_trees2> G:empty().{0,nil}3> G:insert(k,v,G:empty()).{1,{k,v,nil,nil}}4> G:insert(k1,v1,v(3)).{2,{k,v,nil,{k1,v1,nil,nil}}}5> G:insert(k2,v3,v(4)).{3,{k,v,nil,{k1,v1,nil,{k2,v3,nil,nil}}}}6> G:insert(k0,v0,v(4)).{3,{k,v,nil,{k1,v1,{k0,v0,nil,nil},nil}}}7> G:insert(k0,v0,v(5)).{4,{k,v,nil,{k1,v1,{k0,v0,nil,nil},{k2,v3,nil,nil}}}}8> G:insert(k0,v0,v(6)).** exception error: {key_exists,k0}     in function  gb_trees:insert_1/4 (gb_trees.erl, line 321)     in call from gb_trees:insert_1/4 (gb_trees.erl, line 283)     in call from gb_trees:insert_1/4 (gb_trees.erl, line 300)     in call from gb_trees:insert/3 (gb_trees.erl, line 280)
 
   insert操作会触发重新平衡balance(T);删除操作并不触发重新平衡,重新平衡方法大多数时候并不需要显示调用,这个接口暴露出来的目的是元素大量删除之后,通过重新平衡减少查询时间. insert(X, V, T)如果插入重复Key会引发 {key_exists,Key}异常;由于节点删除操作并不会增加树的高度,所以节点删除之后并没有进行再平衡.注意下面的比较:
Eshell V5.9.1  (abort with ^G)1> T={8,{k,v,nil,{k1,v1,{k0,v0,nil,nil},{k4,v4,{k3,v3,nil,nil},{k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}}}.{8,{k,v,nil,  {k1,v1, {k0,v0,nil,nil},   {k4,v4,  {k3,v3,nil,nil}, {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}}}2> gb_trees:delete(k1,T).{7,{k,v,nil,{k3,v3,{k0,v0,nil,nil}, {k4,v4,nil,{k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}}}3> gb_trees:balance(v(2)).{7,{k4,v4,{k0,v0,{k,v,nil,nil},{k3,v3,nil,nil}}, {k6,v6,{k5,v5,nil,nil},{k7,v7,nil,nil}}}}4>

 

 下面lookup方法是gb_trees进行遍历的典型过程:
lookup(Key, {_, T}) ->    lookup_1(Key, T).%% The term order is an arithmetic total order, so we should not%% test exact equality for the keys. (If we do, then it becomes%% possible that neither `>', `<', nor `=:=' matches.) Testing '<'%% and '>' first is statistically better than testing for%% equality, and also allows us to skip the test completely in the%% remaining case.lookup_1(Key, {Key1, _, Smaller, _}) when Key < Key1 ->    lookup_1(Key, Smaller);lookup_1(Key, {Key1, _, _, Bigger}) when Key > Key1 ->    lookup_1(Key, Bigger);lookup_1(_, {_, Value, _, _}) ->    {value, Value};lookup_1(_, nil) ->    none.
 
lookup与get的返回值不同:
6> gb_trees:lookup(k1,T).{value,v1}7> gb_trees:get(k1,T).v18>

 

update方法就执行类似的遍历过程完成了gb_trees的重建:

update(Key, Val, {S, T}) ->    T1 = update_1(Key, Val, T),    {S, T1}.%% See `lookup' for notes on the term comparison order.update_1(Key, Value, {Key1, V, Smaller, Bigger}) when Key < Key1 ->     {Key1, V, update_1(Key, Value, Smaller), Bigger};update_1(Key, Value, {Key1, V, Smaller, Bigger}) when Key > Key1 ->    {Key1, V, Smaller, update_1(Key, Value, Bigger)};update_1(Key, Value, {_, _, Smaller, Bigger}) ->    {Key, Value, Smaller, Bigger}.
    
 enter 是一个复合操作,相当于update_or_insert,存在就更新,不存在就插入:
enter(Key, Val, T) ->    case is_defined(Key, T) of     true ->         update(Key, Val, T);     false ->         insert(Key, Val, T)    end.
 
 is_defined/2,lookup/2,get/2 都是尾递归操作, keys(T)  values(T) 两个操作实现并非尾递归:
keys({_, T}) ->    keys(T, []).keys({Key, _Value, Small, Big}, L) ->    keys(Small, [Key | keys(Big, L)]);keys(nil, L) -> L.values({_, T}) ->    values(T, []).values({_Key, Value, Small, Big}, L) ->    values(Small, [Value | values(Big, L)]);values(nil, L) -> L.
 
  smallest(T) largest(T) 顾名思义,取最小最大键值对,smallest/1,largest/1是尾递归实现.
 take_smallest(T): returns {X, V, T1} X,V是最小值对应的键值对,T1是去掉最小值后的新树.take_largest(T): returns {X, V, T1}也类似.
18> gb_trees:largest(T).{k7,v7}19> gb_trees:take_largest(T).{k7,v7, {7, {k,v,nil, {k1,v1,{k0,v0,nil,nil},            {k4,v4,{k3,v3,nil,nil},{k5,v5,nil,{k6,v6,nil,nil}}}}}}}20> gb_trees:smallest(T).{k,v}21> gb_trees:take_smallest(T).{k,v,  {7,  {k1,v1,  {k0,v0,nil,nil},        {k4,v4,            {k3,v3,nil,nil},            {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}}}22>
看take_largest的实现:
take_largest({Size, Tree}) when is_integer(Size), Size >= 0 ->    {Key, Value, Smaller} = take_largest1(Tree),    {Key, Value, {Size - 1, Smaller}}.take_largest1({Key, Value, Smaller, nil}) ->    {Key, Value, Smaller};take_largest1({Key, Value, Smaller, Larger}) ->    {Key1, Value1, Larger1} = take_largest1(Larger),    {Key1, Value1, {Key, Value, Smaller, Larger1}}.
 
 要遍历整个树怎么办?gb_trees提供了迭代器
12> gb_trees:next(gb_trees:iterator(T)).{k,v,   [{k0,v0,nil,nil},    {k1,v1,        {k0,v0,nil,nil},        {k4,v4,            {k3,v3,nil,nil},            {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}]}13> {Key,Value,I}=gb_trees:next(gb_trees:iterator(T)).{k,v,   [{k0,v0,nil,nil},    {k1,v1,        {k0,v0,nil,nil},        {k4,v4,            {k3,v3,nil,nil},            {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}]}14> {Key2,Value2,I2}=gb_trees:next(I).{k0,v0,    [{k1,v1,         {k0,v0,nil,nil},         {k4,v4,             {k3,v3,nil,nil},             {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}]}15>   15> gb_trees:iterator(T).[{k,v,nil,    {k1,v1,        {k0,v0,nil,nil},        {k4,v4,            {k3,v3,nil,nil},            {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}}]16> I.[{k0,v0,nil,nil},{k1,v1,     {k0,v0,nil,nil},     {k4,v4,         {k3,v3,nil,nil},         {k5,v5,nil,{k6,v6,nil,{k7,v7,nil,nil}}}}}]18>
使用迭代器遍历整个树效率非常高,只比同等数据量的List遍历略慢.说的很玄是吧,实现很简单:
iterator({_, T}) ->    iterator_1(T).iterator_1(T) ->    iterator(T, []).%% The iterator structure is really just a list corresponding to%% the call stack of an in-order traversal. This is quite fast.iterator({_, _, nil, _} = T, As) ->    [T | As];iterator({_, _, L, _} = T, As) ->    iterator(L, [T | As]);iterator(nil, As) ->    As.

 

mochiweb_headers

mochiweb项目的mochiweb_headers就使用了gb_trees实现:
%% @spec enter(key(), value(), headers()) -> headers()%% @doc Insert the pair into the headers, replacing any pre-existing key.enter(K, V, T) ->    K1 = normalize(K),    V1 = any_to_list(V),    gb_trees:enter(K1, {K, V1}, T).%% @spec insert(key(), value(), headers()) -> headers()%% @doc Insert the pair into the headers, merging with any pre-existing key.%%      A merge is done with Value = V0 ++ ", " ++ V1.insert(K, V, T) ->    K1 = normalize(K),    V1 = any_to_list(V),    try gb_trees:insert(K1, {K, V1}, T)    catch        error:{key_exists, _} ->            {K0, V0} = gb_trees:get(K1, T),            V2 = merge(K1, V1, V0),            gb_trees:update(K1, {K0, V2}, T)    end.%% @spec delete_any(key(), headers()) -> headers()%% @doc Delete the header corresponding to key if it is present.delete_any(K, T) ->    K1 = normalize(K),    gb_trees:delete_any(K1, T).

 

When should you use gb_trees over dicts? Well, it's not a clear decision. As the benchmark module I have written will show, gb_trees and dicts have somewhat similar performances in many respects. However, the benchmark demonstrates that dicts have the best read speeds while the gb_trees tend to be a little quicker on other operations. You can judge based on your own needs which one would be the best.

Oh and also note that while dicts have a fold function, gb_trees don't: they instead have aniterator function, which returns a bit of the tree on which you can call gb_trees:next(Iterator) to get the following values in order. What this means is that you need to write your own recursive functions on top of gb_trees rather than use a generic fold. On the other hand, gb_trees let you have quick access to the smallest and largest elements of the structure with gb_trees:smallest/1and gb_trees:largest/1.

link: http://learnyousomeerlang.com/a-short-visit-to-common-data-structures

是不是可以回答下面的问题了?

Q:为什么mochiweb_headers使用gb_tree作为存储结构?为什么不是dict或者其它的数据结构?

晚安!

 

 

原创粉丝点击