组播MAC地址 和 linux cmdline 详细解析

来源:互联网 发布:阿里云怎么抢票 编辑:程序博客网 时间:2024/06/06 04:18

MAC地址是以太网二层使用的一个48bit(6字节十六进制数)的地址,用来标识设备位置。MAC地址分成两部分,前24位是组织唯一标识符(OUI, Organizationally unique identifier),后24位由厂商自行分配。

    MAC地址有单播、组播、广播之分。单播地址(unicast address)表示单一设备、节点,多播地址或者组播地址(multicast address、group address)表示一组设备、节点,广播地址(broadcast address)是组播的特例,表示所有地址,用全F表示:FF-FF-FF-FF-FF-FF。当然,三层的IP地址也有单播、组播、广播之分。

    48bit的MAC地址一般用6字节的十六进制来表示,如XX-XX-XX-XX-XX。IEEE 802.3规定:以太网的第48bit用于表示这个地址是组播地址还是单播地址。如果这一位是0,表示此MAC地址是单播地址,如果这位是1,表示此MAC地址是多播地址。见IEEE 802.3 3.2.3 Address fields: “The first bit (LSB) shall be used in the Destination Address field as an address type designation bit to identify the Destination Address either as an individual or as a group address. If this bit is 0, it shall indicate that the address field contains an individual address. If this bit is 1, it shall indicate that the address field contains a group address that identifies none, one or more, or all of the stations connected to the LAN. In the Source Address field, the first bit is reserved and set to 0.”

    因为以太网线路上按“Big Endian”字节序传送报文(也就是最高字节先传送,关于字节序请参考相关文档),而比特序是”Little Endian”(也就是最低位先传送)。所以有如下的图(从最左边开始传送):

    注意图上的第47bit,这一位表示MAC地址是全球唯一地址还是本地地址,0表示全球唯一地址,1表示本地唯一地址。这一位也叫G/L位。

    对于网络设备上固化的MAC地址,因为它唯一标识这个设备,所以只能是单播地址,也就是MAC帧里面的Source地址第48位只能0。    

    我们常说有2的48次方个MAC地址可供网络设备使用,这些地址可以多到给地球上每一粒沙子分配一个地址,其实这个数量要打折扣的,因为MAC地址虽然有这么多,但真正用在网卡上并且全球唯一的只有2的46次方个:第48bit一定是0,第47bit一定是0。

    这也就引出了一个有意思的现象:随便找一台PC,观察一下它的网卡地址,第1字节的十六进制数一般是4的倍数;查看一下IEEE分配的OUI(http://standards.ieee.org/develop/regauth/oui/oui.txt ),第1字节的十六进制数也一般是4的倍数(早期以太网没有本地地址的概念,所以分配的OUI里面G/L bit也可能是1),这种情况下就不是4的倍数了,但肯定是2的倍数,因为第48位只能是0。

    关于组播地址,有这么个误解:MAC地址第1字节必须是0x01才表示组播地址,连TCP/IP详解上也这么说(见中文版12.4.2第一段)。IEEE 802.3里面已经明确说明了只要第48bit是1就表示组播地址,所以无论MAC地址第1字节是0x01、0xC1或者是0x33都表示这个MAC地址是组播地址(以0x33开头的表示IPV6对应的二层组播地址)。之所以有这样的误解,是因为到目前为止,大部分组播MAC地址的第1字节都是0x01。如:

01-80-C2-00-00-00(STP协议使用)

01-80-C2-00-00-01(MAC Control的PAUSE帧使用)

01-80-C2-00-00-02(Slow Protocol: 802.3ah OAM/ LACP 协议都用这个地址,这个地址很有故事,有多少软件处理这个地址会出问题啊!)

01-00-5E-xx-xx-xx(IP组播地址对应的二层组播地址)。

完整的列表见http://standards.ieee.org/develop/regauth/grpmac/public.html

    之所以大部分组播地址都以01-80-C2和01-00-5E开头,那是因为使用这些组播地址的协议都是带头大哥IEEE和IANA名下的,它们的OUI分别是00-80-C2和00-00-5E是,变成组播地址就是01-80-C2和01-00-5E了,当然,除了带头大哥霸占的这些组播地址,还有01-00-0C-CC-CC-CC这样的地址,这个地址是Cisco霸占的,Cisco的OUI是00-00-0C。


处理模型

Linux kernel 的启动包括很多组件的初始化和相关配置,这些配置参数一般是通过command line 进行配置的。在进行后续分析之前,先来理解一下command line 的处理模型:
要处理的对象是一个字符串,其中包含了各种配置信息,通常各个配置之间通过空格进行分离,每个配置的表达形式是如:param=value1,value2或者很简单就是一个rw 。
那么kernel 就需要提供对这些参数进行处理的处理函数列表。根据参数的作用以及执行期的先后不同,这些处理函数被定义到不同的段中。针对每一个参数,Kernel 都会到相应的段中查找相应的处理函数,最终进行各个组件的配置。

配置格式

常见的配置格式如:
console=ttySAC0,115200 root=nfs nfsroot=192.168.1.9:/source/rootfs initrd=0x10800000,0x14af47

配置方式

2.1 Bootloader动态配置

bootloader 进行参数配置,command line 将做为atag_list 的一个节点传递到Kernel

2.2 Kernel 静态配置

通过make menuconfig 进行配置:运行后配置boot options->Default kernel command string 。该配置将被静态编译到Kernel中,通过变量default_command_line 访问。

3  解析配置

3.1 相关定义

根据执行的先后顺序,可以将处理函数分为三个大类,他们分别存在于下面三个段中(参考top/arch/arm/kernel/vmlinux.lds ):
__setup_start = .; *(.init.setup) __setup_end = .;
__early_begin = .; *(.early_param.init) __early_end = .;
__start___param = .; *(__param) __stop___param = .;
这三个段内存储的不是参数,而是command line 参数所需要的处理函数。

3.1.1 .early_param.init

.early_param.init ” 所定义的处理相对靠前一些,它所处理的参数例如:initrd= ,cachepolicy= ,nocache nowb , ecc= , vmalloc= , mem= ,等等。
这些处理函数是通过__early_param宏来定义的,例如:

static void __init early_initrd(char **p)
{ …… }
__early_param("initrd=", early_initrd);

对于宏__early_param,可以在top/arch/arm/include/asm/Setup.h 中找到如下定义:
struct early_params {
    const char *arg;
    void (*fn)(char **p);
};
#define __early_param(name,fn) \
static struct early_params __early_##fn __used \
__attribute__((__section__(".early_param.init"))) = { name, fn }
3.1.2 .init.setup
.init.setup ”定义的处理则要靠后一些,它所处理的参数例如:nfsroot= , ip= ,等等。
这些处理函数是通过__setup宏来定义的,例如:
static int __init nfs_root_setup(char *line)
{ …… }
__setup("nfsroot=", nfs_root_setup);
对于宏__setup,可以在top/include/linux/Init.h 中看到:
#define __setup_param(str, unique_id, fn, early) \
    static char __setup_str_##unique_id[] __initdata __aligned(1) = str; \
    static struct obs_kernel_param __setup_##unique_id \
           __used __section(.init.setup) \
           __attribute__((aligned((sizeof(long))))) \
           = { __setup_str_##unique_id, fn, early }

#define __setup(str, fn) \
    __setup_param(str, fn, fn, 0)

/* NOTE: fn is as per module_param, not __setup! Emits warning if fn
* returns non-zero. */
#define early_param(str, fn) \
    __setup_param(str, fn, fn, 1)
注意看的话,可以看到还有一个宏early_param,它与宏__setup的定义相似,只不过最后一个宏参数是1 而不是0 。1表示需要提前处理的参数。

3.1.3 __param

这个段中保存的是build-in 类型module 的配置参数。该宏直接用来修饰需要的变量。

3.2  解析

3.2.1 相关变量

相关的变量包括:
default_command_line
保存memuconfig 配置的参数,如果bootloader 传入了命令行参数,那么这个新的配置将被更新到该变量中。
boot_command_line
存在于.init.data 段。最初是default_command_line 的拷贝。
command_line
存在于.init.data 段。在parse_cmdline() 中被赋值,数据来源是default_command_line 。
saved_command_line
用于保存没有处理过的命令行参数,是boot_caommand_line 的拷贝。
static_command_line
command_line 的拷贝。

3.2.2 主要函数

函数名称:parse_cmdline()
操作数据:default_command_line
函数列表: .early_param.init 段(在__early_begin 和__early_end 之间)。
函数功能: 依据函数列表对default_command_line 中的参数进行处理。
函数名称:parse_early_param()
操作数据:boot_command_line
函数列表: .init.setup 段中(__setup_start 和__setup_end 之间),主要是通过宏early_param定义的部分。
函数功能: 依据函数列表对boot_command_line 中的参数进行处理。
注意parse_one() 的第四个入参是0 ,而且第五个参数是NULL 。这里没有给出参数队列,不会对boot_command_line的每个参数在参数队列中进行对比查找,而是直接在do_early_param() 中进行条件判断,如果满足下面的条件,那么对该参数进行对应的操作:
if ((p->early && strcmp(param, p->str) == 0) ||
                  (strcmp(param, "console") == 0 &&
                   strcmp(p->str, "earlycon") == 0)
              )
函数名称:parse_args()
操作数据:static_command_line
函数列表: __param 段(__start___param 和__stop___param 之间)。
函数功能: 该操作将依据函数列表,对static_command_line 中的参数进行相应的操作。这个操作在parse_one() 的第一部分代码完成:
for (i = 0; i < num_params; i++) {
          if (parameq(param, params[i].name)) {
                 DEBUGP("They are equal! Calling %p\n",
                        params[i].set);
                 return params[i].set(val, &params[i]);
          }
   }
接下来对于不被这个列表所支持的参数,将在unknown_bootoption() 中进行处理。在unknown_bootoption() 中主要是obsolete_checksetup()的操作。
函数名称:obsolete_checksetup()
操作数据:static_command_line
函数列表: .init.setup 段中(__setup_start 和__setup_end 之间),主要是通过宏__setup定义的部分。
函数功能: 该操作将依据函数列表,对static_command_line 中的参数进行相应的操作。如果是在parse_early_param() 中已经处理的操作,那么这里不再处理;如果是查找到的条目中没有操作函数,那么这表示是过时的数据定义(有些早期的代码,没有定义这个函数);如果不是以上两种情形,那么利用找到的函数对参数进行处理。

3.2.3图示


原创粉丝点击